Applying Policy with BGP

- Policy-based on AS path, community or the prefix
- Rejecting/accepting selected routes
- Set attributes to influence path selection
- Tools:
 - Prefix-list (filters prefixes)
 - Filter-list (filters ASes)
 - Route-maps and communities
Policy Control – Prefix List

• Per neighbour prefix filter
 – incremental configuration
• Inbound or Outbound
• Based upon network numbers (using familiar IPv4 address/mask format)
• Using access-lists in Cisco IOS for filtering prefixes was deprecated long ago
 – Strongly discouraged!
Prefix-list Command Syntax

• Syntax:

 [no] ip prefix-list list-name [seq seq-value]

 permit|deny network/len [ge ge-value] [le le-value]

 network/len: The prefix and its length

 ge ge-value: “greater than or equal to”

 le le-value: “less than or equal to”

• Both “ge” and “le” are optional
 – Used to specify the range of the prefix length to be matched for prefixes that are more specific than network/len

• Sequence number is also optional
 – no ip prefix-list sequence-number to disable display of sequence numbers
Prefix Lists – Examples

- Deny default route
 `ip prefix-list EG deny 0.0.0.0/0`

- Permit the prefix 35.0.0.0/8
 `ip prefix-list EG permit 35.0.0.0/8`

- Deny the prefix 172.16.0.0/12
 `ip prefix-list EG deny 172.16.0.0/12`

- In 192/8 allow up to /24
 `ip prefix-list EG permit 192.0.0.0/8 le 24`
 - This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25, /26, /27, /28, /29, /30, /31 and /32.
Prefix Lists – Examples

• In 192/8 deny /25 and above

 \texttt{ip prefix-list EG deny 192.0.0.0/8 ge 25}

 – This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the address block 192.0.0.0/8.

 – It has the same effect as the previous example

• In 193/8 permit prefixes between /12 and /20

 \texttt{ip prefix-list EG permit 193.0.0.0/8 ge 12 le 20}

 – This denies all prefix sizes /8, /9, /10, /11, /21, /22, ... and higher in the address block 193.0.0.0/8.

• Permit all prefixes

 \texttt{ip prefix-list EG permit 0.0.0.0/0 le 32}

 – 0.0.0.0 matches all possible addresses, “0 le 32” matches all possible prefix lengths
Policy Control – Prefix List

• Example Configuration

 router bgp 100
 network 105.7.0.0 mask 255.255.0.0
 neighbor 102.10.1.1 remote-as 110
 neighbor 102.10.1.1 prefix-list AS110-IN in
 neighbor 102.10.1.1 prefix-list AS110-OUT out

 !
 ip prefix-list AS110-IN deny 218.10.0.0/16
 ip prefix-list AS110-IN permit 0.0.0.0/0 le 32
 ip prefix-list AS110-OUT permit 105.7.0.0/16
 ip prefix-list AS110-OUT deny 0.0.0.0/0 le 32
Policy Control – Filter List

• Filter routes based on AS path
 – Inbound or Outbound

• Example Configuration:

```plaintext
router bgp 100
  network 105.7.0.0 mask 255.255.0.0
  neighbor 102.10.1.1 filter-list 5 out
  neighbor 102.10.1.1 filter-list 6 in

! ip as-path access-list 5 permit ^200$
ip as-path access-list 6 permit ^150$
```
Policy Control – Regular Expressions

• Like Unix regular expressions
 . Match one character
 * Match any number of preceding expression
 + Match at least one of preceding expression
 ^ Beginning of line
 $ End of line
 \ Escape a regular expression character
 _ Beginning, end, white-space, brace
 | Or
 () brackets to contain expression
 [] brackets to contain number ranges
Policy Control – Regular Expressions

• Simple Examples
 .* match anything
 .+ match at least one character
 ^$ match routes local to this AS
 _1800$ originated by AS1800
 ^1800_ received from AS1800
 1800 via AS1800
 _790_1800_ via AS1800 and AS790
 (1800)+ multiple AS1800 in sequence (used to match AS-PATH prepends)
 \(65530\) via AS65530 (confederations)
Policy Control – Regular Expressions

• Not so simple Examples

^[0-9]+$ Match AS_PATH length of one

^[0-9]+_[0-9]+$ Match AS_PATH length of two

^[0-9]*_[0-9]+$ Match AS_PATH length of one or two

^[0-9]*_[0-9]*$ Match AS_PATH length of one or two
 (will also match zero)

(701|1800) Match anything which has gone through AS701 or AS1800

1849(+.+_)12163$ Match anything of origin AS12163 and passed through AS1849
Policy Control – Route Maps

• A route-map is like a “programme” for IOS
• Has “line” numbers, like programmes
• Each line is a separate condition/action
• Concept is basically:
 if match then do expression and exit
 else
 if match then do expression and exit
 else etc
• Route-map “continue” lets ISPs apply multiple conditions and actions in one route-map
Route Maps – Caveats

• Lines can have multiple set statements
• Lines can have multiple match statements
• Line with only a match statement
 – Only prefixes matching go through, the rest are dropped
• Line with only a set statement
 – All prefixes are matched and set
 – Any following lines are ignored
• Line with a match/set statement and no following lines
 – Only prefixes matching are set, the rest are dropped
Route Maps – Caveats

• Example
 – Omitting the third line below means that prefixes not matching list-one or list-two are dropped

```plaintext
route-map sample permit 10
  match ip address prefix-list list-one
  set local-preference 120
!
route-map sample permit 20
  match ip address prefix-list list-two
  set local-preference 80
!
route-map sample permit 30 ! Don’t forget this
```
Route Maps – Matching prefixes

• Example Configuration

```bash
router bgp 100
  neighbor 1.1.1.1 route-map infilter in
!
route-map infilter permit 10
  match ip address prefix-list HIGH-PREF
  set local-preference 120
!
route-map infilter permit 20
  match ip address prefix-list LOW-PREF
  set local-preference 80
!
ip prefix-list HIGH-PREF permit 10.0.0.0/8
ip prefix-list LOW-PREF permit 20.0.0.0/8
```
Route Maps – AS-PATH filtering

• Example Configuration

```plaintext
router bgp 100
    neighbor 102.10.1.2 remote-as 200
    neighbor 102.10.1.2 route-map filter-on-as-path in
!
route-map filter-on-as-path permit 10
    match as-path 1
    set local-preference 80
!
route-map filter-on-as-path permit 20
    match as-path 2
    set local-preference 200
!
ip as-path access-list 1 permit _150$
ip as-path access-list 2 permit _210_
```
Route Maps – AS-PATH preends

• Example configuration of AS-PATH prepend

 router bgp 300

 network 105.7.0.0 mask 255.255.0.0

 neighbor 2.2.2.2 remote-as 100

 neighbor 2.2.2.2 route-map SETPATH out

 route-map SETPATH permit 10

 set as-path prepend 300 300

• Use your own AS number when prepending
 – Otherwise BGP loop detection may cause disconnects
Route Maps – Matching Communities

- Example Configuration

 router bgp 100
 neighbor 102.10.1.2 remote-as 200
 neighbor 102.10.1.2 route-map filter-on-community in

 route-map filter-on-community permit 10
 match community 1
 set local-preference 50

 route-map filter-on-community permit 20
 match community 2 exact-match
 set local-preference 200

 ip community-list 1 permit 150:3 200:5
 ip community-list 2 permit 88:6
Community-List Processing

• Note:
 – When multiple values are configured in the same community list statement, a logical AND condition is created. All community values must match to satisfy an AND condition
 ip community-list 1 permit 150:3 200:5

 – When multiple values are configured in separate community list statements, a logical OR condition is created. The first list that matches a condition is processed
 ip community-list 1 permit 150:3
Route Maps – Setting Communities

• Example Configuration

```
routing bgp 100
    network 105.7.0.0 mask 255.255.0.0
    neighbor 102.10.1.1 remote-as 200
    neighbor 102.10.1.1 send-community
    neighbor 102.10.1.1 route-map set-community out

    route-map set-community permit 10
        match ip address prefix-list NO-ANNOUNCE
        set community no-export

    route-map set-community permit 20
        match ip address prefix-list AGGREGATE

    ip prefix-list NO-ANNOUNCE permit 105.7.0.0/16 ge 17
    ip prefix-list AGGREGATE permit 105.7.0.0/16
```
• Handling multiple conditions and actions in one route-map (for BGP neighbour relationships only)

 route-map peer-filter permit 10
 match ip address prefix-list group-one
 continue 30
 set metric 2000

 !
 route-map peer-filter permit 20
 match ip address prefix-list group-two
 set community no-export

 !
 route-map peer-filter permit 30
 match ip address prefix-list group-three
 set as-path prepend 100 100

 !
Managing Policy Changes

• New policies only apply to the updates going through the router **AFTER** the policy has been introduced or changed

• To facilitate policy changes on the entire BGP table the router handles the BGP peerings need to be “refreshed”
 – This is done by clearing the BGP session either in or out, for example: `clear ip bgp <neighbour-addr> in|out`

• Do NOT forget **in** or **out** — doing so results in a hard reset of the BGP session
Managing Policy Changes

• Ability to clear the BGP sessions of groups of neighbours configured according to several criteria

• `clear ip bgp <addr> [in|out]`

 `<addr>` may be any of the following

 - `x.x.x.x` IP address of a peer
 - `*` all peers
 - `ASN` all peers in an AS
 - `external` all external peers
 - `peer-group <name>` all peers in a peer-group
Acknowledgement and Attribution

This presentation contains content and information originally developed and maintained by the following organisation(s)/individual(s) and provided for the African Union AXIS Project

Cisco ISP/IXP Workshops

Philip Smith: - pfsinoz@gmail.com

APNIC www.apnic.net
BGP Policy Control

End