BGP Best Current Practices
Configuring BGP

Where do we start?
IOS Good Practices

• ISPs should start off with the following BGP commands as a basic template:

  ```
  router bgp 64511
  bgp deterministic-med
  distance bgp 200 200 200
  no synchronization
  no auto-summary
  ```

• If supporting more than just IPv4 unicast neighbours

  ```
  no bgp default ipv4-unicast
  ```
 is also very important and required

Replace with public ASN

Make ebgp and ibgp distance the same
Cisco IOS Good Practices

• BGP in Cisco IOS is **permissive** by default
• Configuring BGP peering without using filters means:
 – All best paths on the local router are passed to the neighbour
 – All routes announced by the neighbour are received by the local router
 – Can have disastrous consequences
• **Good practice is to ensure that each eBGP neighbour has inbound and outbound filter applied:**

  ```
  router bgp 64511
  neighbor 1.2.3.4 remote-as 64510
  neighbor 1.2.3.4 prefix-list as64510-in in
  neighbor 1.2.3.4 prefix-list as64510-out out
  ```
What is BGP for??

What is an IGP not for?
BGP versus OSPF/ISIS

• Internal Routing Protocols (IGPs)
 – examples are ISIS and OSPF
 – used for carrying infrastructure addresses
 – NOT used for carrying Internet prefixes or customer prefixes
 – design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence
BGP versus OSPF/ISIS

• BGP used internally (iBGP) and externally (eBGP)

• iBGP used to carry
 – some/all Internet prefixes across backbone
 – customer prefixes

• eBGP used to
 – exchange prefixes with other ASes
 – implement routing policy
BGP versus OSPF/ISIS

• DO NOT:
 – distribute BGP prefixes into an IGP
 – distribute IGP routes into BGP
 – use an IGP to carry customer prefixes

• YOUR NETWORK WILL NOT SCALE
Aggregation
Aggregation

• Aggregation means announcing the address block received from the RIR to the other ASes connected to your network

• Subprefixes of this aggregate may be:
 – Used internally in the ISP network
 – Announced to other ASes to aid with multihoming

• Unfortunately too many people are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table
 – Note: Same is happening for /48s with IPv6
Configuring Aggregation – Cisco IOS

• ISP has 101.10.0.0/19 address block

• To put into BGP as an aggregate:

  ```
  router bgp 64511
  
  network 101.10.0.0 mask 255.255.224.0
  
  ip route 101.10.0.0 255.255.224.0 null0
  ```

• The static route is a “pull up” route

 – more specific prefixes within this address block ensure connectivity to ISP’s customers

 – “longest match lookup
Aggregation

• Address block should be announced to the Internet as an aggregate
• Subprefixes of address block should NOT be announced to Internet unless for traffic engineering
 – See BGP Multihoming presentations
• Aggregate should be generated internally
 – Not on the network borders!
Announcing Aggregate – Cisco IOS

• Configuration Example

```plaintext
router bgp 64511
  network 101.10.0.0 mask 255.255.224.0
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list out-filter out

  ip route 101.10.0.0 255.255.224.0 null0

  ip prefix-list out-filter permit 101.10.0.0/19
  ip prefix-list out-filter deny 0.0.0.0/0 le 32
```
Announcing an Aggregate

• ISPs who don’t and won’t aggregate are held in poor regard by community

• Registries publish their minimum allocation size
 – Anything from a /20 to a /22 depending on RIR
 – Different sizes for different address blocks

• No real reason to see anything longer than a /22 prefix in the Internet
 – BUT there are currently (June 2012) >216000 /24s!

• But: APNIC changed (Oct 2010) its minimum allocation size on all blocks to /24
 – IPv4 run-out is starting to have an impact
• Customer has /23 network assigned from AS100’s /19 address block
• AS100 announces customers’ individual networks to the Internet
Aggregation – Bad Example

• Customer link goes down
 – Their /23 network becomes unreachable
 – /23 is withdrawn from AS100’s iBGP
• Their ISP doesn’t aggregate its /19 network block
 – /23 network withdrawal announced to peers
 – starts rippling through the Internet
 – added load on all Internet backbone routers as network is removed from routing table

Customer link returns
 – Their /23 network is now visible to their ISP
 – Their /23 network is re-advertised to peers
 – Starts rippling through Internet
 – Load on Internet backbone routers as network is reinserted into routing table
 – Some ISP’s suppress the flaps
 – Internet may take 10-20 min or longer to be visible
 – Where is the Quality of Service???
Aggregation – Example

- Customer has /23 network assigned from AS100’s /19 address block
- AS100 announced /19 aggregate to the Internet
Aggregation – Good Example

• Customer link goes down
 – their /23 network becomes unreachable
 – /23 is withdrawn from AS100’s iBGP

• /19 aggregate is still being announced
 – no BGP hold down problems
 – no BGP propagation delays
 – no damping by other ISPs

• Customer link returns
 • Their /23 network is visible again
 – The /23 is re-injected into AS100’s iBGP

• The whole Internet becomes visible immediately

• Customer has Quality of Service perception
Aggregation – Summary

• Good example is what everyone should do!
 – Adds to Internet stability
 – Reduces size of routing table
 – Reduces routing churn
 – Improves Internet QoS for everyone

• Bad example is what too many still do!
 – Why? Lack of knowledge?
 – Laziness?
Separation of iBGP and eBGP

- Many ISPs do not understand the importance of separating iBGP and eBGP
 - iBGP is where all customer prefixes are carried
 - eBGP is used for announcing aggregate to Internet and for Traffic Engineering
- Do NOT do traffic engineering with customer originated iBGP prefixes
 - Leads to instability similar to that mentioned in the earlier bad example
 - Even though aggregate is announced, a flapping subprefix will lead to instability for the customer concerned
- **Generate traffic engineering prefixes on the Border Router**
The Internet Today (June 2012)

Current Internet Routing Table Statistics
- BGP Routing Table Entries 412487
- Prefixes after maximum aggregation 174439
- Unique prefixes in Internet 200548
- Prefixes smaller than registry alloc 175889
- /24s announced 215907
- ASes in use 41153
Efforts to improve aggregation

• The CIDR Report
 – Initiated and operated for many years by Tony Bates
 – Now combined with Geoff Huston’s routing analysis
 • www.cidr-report.org
 • (covers both IPv4 and IPv6 BGP tables)
 – Results e-mailed on a weekly basis to most operations lists around the world
 – Lists the top 30 service providers who could do better at aggregating

• RIPE Routing WG aggregation recommendation
 – RIPE-399 — www.ripe.net/ripe/docs/ripe-399.html
Efforts to Improve Aggregation

The CIDR Report

• Also computes the size of the routing table assuming ISPs performed optimal aggregation

• **Website allows searches and computations of aggregation to be made on a per AS basis**

 – Flexible and powerful tool to aid ISPs

 – Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information

 – Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size

 – Very effectively challenges the traffic engineering excuse
Status Summary

Table History

<table>
<thead>
<tr>
<th>Date</th>
<th>Prefixes</th>
<th>CIDR Aggregated</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-05-12</td>
<td>414357</td>
<td>242094</td>
</tr>
<tr>
<td>26-05-12</td>
<td>414444</td>
<td>242009</td>
</tr>
<tr>
<td>27-05-12</td>
<td>414372</td>
<td>242171</td>
</tr>
<tr>
<td>28-05-12</td>
<td>414483</td>
<td>242396</td>
</tr>
<tr>
<td>29-05-12</td>
<td>414855</td>
<td>242346</td>
</tr>
<tr>
<td>30-05-12</td>
<td>415000</td>
<td>242304</td>
</tr>
<tr>
<td>31-05-12</td>
<td>414797</td>
<td>242308</td>
</tr>
<tr>
<td>01-06-12</td>
<td>415005</td>
<td>242251</td>
</tr>
</tbody>
</table>

Plot: BGP Table Size

AS Summary

<table>
<thead>
<tr>
<th>41284</th>
<th>Number of ASes in routing system</th>
</tr>
</thead>
<tbody>
<tr>
<td>17232</td>
<td>Number of ASes announcing only one prefix</td>
</tr>
<tr>
<td>3411</td>
<td>Largest number of prefixes announced by an AS</td>
</tr>
<tr>
<td>112706016</td>
<td>Largest address span announced by an AS (/32s)</td>
</tr>
</tbody>
</table>

Plot: AS count
Plot: Average announcements per origin AS
Report: ASes ordered by originating address span
Report: ASes ordered by transit address span
Report: Autonomous System number-to-name mapping (from Registry WHOIS data)
Aggregation Suggestions

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

<table>
<thead>
<tr>
<th>Rank</th>
<th>AS</th>
<th>AS Name</th>
<th>Current</th>
<th>Wthdw</th>
<th>Aggte</th>
<th>Annce</th>
<th>Redctn</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AS6389</td>
<td>Bellsouth-net-blk - BellSouth.net Inc.</td>
<td>3411</td>
<td>3256</td>
<td>41</td>
<td>196</td>
<td>3215</td>
<td>94.25%</td>
</tr>
<tr>
<td>Prefix</td>
<td>AS Path</td>
<td>Aggregation Suggestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.81.90.0/23</td>
<td>4777 2516 3356 7018 6389</td>
<td>- Withdrawn - matching aggregate 65.0.0.0/12 4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.83.3.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.83.5.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.83.7.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.0.0/12</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.0.0/18</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.40.0/22</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.50.0/23</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.64.0/18</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.128.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.192.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0.224.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.32.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.64.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.128.0/18</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.224.0/20</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.240.0/20</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.2.0.0/16</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.2.0.0/17</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.2.128.0/17</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.3.224.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.4.32.0/19</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.4.64.0/18</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.1.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.12.0/22</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.16.0/22</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.20.0/23</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.21.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.22.0/23</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.24.0/22</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.28.0/22</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.32.0/20</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.34.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.46.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.57.0/24</td>
<td>4777 2516 3356 7018 6389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aggregation Suggestions

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

<table>
<thead>
<tr>
<th>Rank</th>
<th>AS</th>
<th>AS Name</th>
<th>Current</th>
<th>Wthdw</th>
<th>Aggte</th>
<th>Annce</th>
<th>Redctn</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>AS18566</td>
<td>COVAD – Covad Communications Co.</td>
<td>2092</td>
<td>1687</td>
<td>301</td>
<td>706</td>
<td>1386</td>
<td>66.25%</td>
</tr>
</tbody>
</table>

Prefix	AS Path	Aggregation Suggestion
64.81.7.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.16.0/22 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.20.0/22 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.22.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.24.0/21 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.24.0/22 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.28.0/22 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.20.0/22 4777 2516 4565 18566
64.81.32.0/20 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.32.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.33.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.34.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.35.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.36.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.37.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.38.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.39.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.40.0/24 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.32.0/20 4777 2516 4565 18566
64.81.44.0/20 | 4777 2516 4565 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 4565 18566
64.81.48.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.49.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.50.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.51.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.52.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.53.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.54.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.55.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.56.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.57.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.58.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.59.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.60.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.61.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.48.0/20 4777 2516 3356 18566
64.81.64.0/20 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.64.0/20 4777 2516 3356 18566
64.81.64.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.64.0/20 4777 2516 3356 18566
64.81.65.0/24 | 4777 2516 3356 18566 | Withdrawn - matching aggregate 64.81.64.0/20 4777 2516 3356 18566
Importance of Aggregation

• Size of routing table
 – Router Memory is not so much of a problem as it was in the 1990s
 – Routers can be specified to carry 1 million+ prefixes

• Convergence of the Routing System
 – This is a problem
 – Bigger table takes longer for CPU to process
 – BGP updates take longer to deal with
 – BGP Instability Report tracks routing system update activity
 – bgpupdates.potaroo.net/instability/bgpupd.html
The BGP Instability Report

50 Most active ASes for the past 7 days

<table>
<thead>
<tr>
<th>RANK</th>
<th>ASN</th>
<th>UPDs</th>
<th>%</th>
<th>Prefixes</th>
<th>UPDs/Prefix</th>
<th>AS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>383</td>
<td>192192</td>
<td>8.46%</td>
<td>126</td>
<td>1525.33</td>
<td>AFCONC-BLOCK1-AS - 754th Electronic Systems Group</td>
</tr>
<tr>
<td>2</td>
<td>8452</td>
<td>91007</td>
<td>4.00%</td>
<td>1375</td>
<td>66.19</td>
<td>TE-AS TE-AS</td>
</tr>
<tr>
<td>3</td>
<td>8402</td>
<td>60332</td>
<td>2.65%</td>
<td>1941</td>
<td>31.08</td>
<td>CORBINA-AS OJSC "Vimpelcom"</td>
</tr>
<tr>
<td>4</td>
<td>9829</td>
<td>54914</td>
<td>2.42%</td>
<td>1298</td>
<td>42.31</td>
<td>BSNL-NIB National Internet Backbone</td>
</tr>
<tr>
<td>5</td>
<td>19647</td>
<td>47156</td>
<td>2.07%</td>
<td>20</td>
<td>2357.80</td>
<td>HPD20001 - Hewlett-Packard Operation Division</td>
</tr>
<tr>
<td>6</td>
<td>38142</td>
<td>33384</td>
<td>1.47%</td>
<td>16</td>
<td>2036.50</td>
<td>UNAIR-AS-ID Universitas Airlangga</td>
</tr>
<tr>
<td>7</td>
<td>12479</td>
<td>27393</td>
<td>1.21%</td>
<td>697</td>
<td>39.30</td>
<td>UNI2-AS France Telecom Espana SA</td>
</tr>
<tr>
<td>8</td>
<td>35994</td>
<td>26629</td>
<td>1.17%</td>
<td>73</td>
<td>364.78</td>
<td>AKAMAI-AS - Akamai Technologies, Inc.</td>
</tr>
<tr>
<td>9</td>
<td>7908</td>
<td>25800</td>
<td>1.14%</td>
<td>79</td>
<td>326.58</td>
<td>Comsat Argentina S.A.</td>
</tr>
<tr>
<td>10</td>
<td>5800</td>
<td>23102</td>
<td>1.02%</td>
<td>268</td>
<td>86.20</td>
<td>DNIC-ASBLK-05800-06055 - DoD Network Information Center</td>
</tr>
<tr>
<td>11</td>
<td>41661</td>
<td>21899</td>
<td>0.96%</td>
<td>356</td>
<td>61.51</td>
<td>ERTH-CHEL-AS CJSC "ER-Telecom Holding"</td>
</tr>
<tr>
<td>12</td>
<td>1257</td>
<td>20680</td>
<td>0.91%</td>
<td>190</td>
<td>108.84</td>
<td>TELE2</td>
</tr>
<tr>
<td>13</td>
<td>13118</td>
<td>20040</td>
<td>0.88%</td>
<td>48</td>
<td>417.50</td>
<td>ASN-YARTELECOM OJSC Rostelecom</td>
</tr>
<tr>
<td>14</td>
<td>28306</td>
<td>19103</td>
<td>0.84%</td>
<td>34</td>
<td>551.85</td>
<td>TC Net Informática e Telecomunicações LTDA</td>
</tr>
<tr>
<td>15</td>
<td>10455</td>
<td>18155</td>
<td>0.80%</td>
<td>65</td>
<td>279.31</td>
<td>LUCENT-CIO - Lucent Technologies Inc.</td>
</tr>
<tr>
<td>16</td>
<td>17813</td>
<td>17513</td>
<td>0.77%</td>
<td>133</td>
<td>131.68</td>
<td>MTNL-AP Mahanagar Telephone Nigam Ltd.</td>
</tr>
<tr>
<td>17</td>
<td>3549</td>
<td>16826</td>
<td>0.74%</td>
<td>1007</td>
<td>16.71</td>
<td>GBLX Global Crossing Ltd.</td>
</tr>
<tr>
<td>18</td>
<td>36856</td>
<td>16593</td>
<td>0.73%</td>
<td>7</td>
<td>2370.43</td>
<td>MOZILLA-CORP - Mozilla Corporation</td>
</tr>
<tr>
<td>19</td>
<td>25543</td>
<td>15053</td>
<td>0.66%</td>
<td>55</td>
<td>273.69</td>
<td>FasoNet-AS</td>
</tr>
<tr>
<td>20</td>
<td>24560</td>
<td>13716</td>
<td>0.60%</td>
<td>1028</td>
<td>13.34</td>
<td>AIRTLELBROADBAND-AS-AP Bharti Airtel Ltd., Telemedia Services</td>
</tr>
<tr>
<td>21</td>
<td>2118</td>
<td>12271</td>
<td>0.54%</td>
<td>1312</td>
<td>9.35</td>
<td>RELCOM-AS OOO "NPO Relcom"</td>
</tr>
<tr>
<td>22</td>
<td>19318</td>
<td>12159</td>
<td>0.53%</td>
<td>47</td>
<td>256.70</td>
<td>NJIX-AS-1 - NEW JERSEY INTERNATIONAL INTERNET EXCHANGE LLC</td>
</tr>
</tbody>
</table>
50 Most active Prefixes for the past 7 days

<table>
<thead>
<tr>
<th>RANK</th>
<th>PREFIX</th>
<th>UPDs</th>
<th>%</th>
<th>Origin AS – AS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109.161.64.0/19</td>
<td>19671</td>
<td>0.81%</td>
<td>13118 - ASN-YARTELECOM OJSC Rostelecom</td>
</tr>
<tr>
<td>2</td>
<td>63.245.221.0/24</td>
<td>16573</td>
<td>0.68%</td>
<td>36856 - MOZILLA-CORP - Mozilla Corporation</td>
</tr>
<tr>
<td>3</td>
<td>168.87.176.0/24</td>
<td>14222</td>
<td>0.58%</td>
<td>19647 - HPOD20001 - Hewlett-Packard Operation Division</td>
</tr>
<tr>
<td>4</td>
<td>168.87.128.0/21</td>
<td>14171</td>
<td>0.58%</td>
<td>19647 - HPOD20001 - Hewlett-Packard Operation Division</td>
</tr>
<tr>
<td>5</td>
<td>130.36.34.0/24</td>
<td>10737</td>
<td>0.44%</td>
<td>32528 - ABBOTT Abbot Labs</td>
</tr>
<tr>
<td>6</td>
<td>69.31.106.0/23</td>
<td>9520</td>
<td>0.39%</td>
<td>35994 - AKAMAI-AS - Akamai Technologies, Inc.</td>
</tr>
<tr>
<td>7</td>
<td>155.72.152.0/21</td>
<td>9383</td>
<td>0.38%</td>
<td>19647 - HPOD20001 - Hewlett-Packard Operation Division</td>
</tr>
<tr>
<td>8</td>
<td>155.72.158.0/24</td>
<td>9376</td>
<td>0.38%</td>
<td>19647 - HPOD20001 - Hewlett-Packard Operation Division</td>
</tr>
<tr>
<td>9</td>
<td>41.43.147.0/24</td>
<td>9035</td>
<td>0.37%</td>
<td>8452 - TE-AS TE-AS</td>
</tr>
<tr>
<td>10</td>
<td>23.2.6.0/23</td>
<td>8522</td>
<td>0.35%</td>
<td>35994 - AKAMAI-AS - Akamai Technologies, Inc.</td>
</tr>
<tr>
<td>11</td>
<td>23.65.27.0/24</td>
<td>8520</td>
<td>0.35%</td>
<td>35994 - AKAMAI-AS - Akamai Technologies, Inc.</td>
</tr>
<tr>
<td>12</td>
<td>62.36.252.0/22</td>
<td>8022</td>
<td>0.33%</td>
<td>12479 - UNI2-AS France Telecom Espana SA</td>
</tr>
<tr>
<td>13</td>
<td>91.202.212.0/22</td>
<td>7750</td>
<td>0.32%</td>
<td>44798 - PERVOMAYSK-AS PP "SKS-Pervomaysk"</td>
</tr>
<tr>
<td>14</td>
<td>62.36.249.0/24</td>
<td>6535</td>
<td>0.27%</td>
<td>12479 - UNI2-AS France Telecom Espana SA</td>
</tr>
<tr>
<td>15</td>
<td>62.36.241.0/24</td>
<td>6218</td>
<td>0.25%</td>
<td>12479 - UNI2-AS France Telecom Espana SA</td>
</tr>
<tr>
<td>16</td>
<td>62.36.210.0/24</td>
<td>6060</td>
<td>0.25%</td>
<td>12479 - UNI2-AS France Telecom Espana SA</td>
</tr>
<tr>
<td>17</td>
<td>59.177.48.0/20</td>
<td>5860</td>
<td>0.24%</td>
<td>17813 - MTNL-AP Mahanagar Telephone Nigam Ltd.</td>
</tr>
<tr>
<td>18</td>
<td>194.63.9.0/24</td>
<td>4646</td>
<td>0.19%</td>
<td>1273 - CW Cable and Wireless Worldwide plc</td>
</tr>
<tr>
<td>19</td>
<td>182.64.0.0/16</td>
<td>4607</td>
<td>0.19%</td>
<td>24560 - AIRTELBROADBAND-AS-AP Bharti Airtel Ltd., Telemmedia Services</td>
</tr>
<tr>
<td>20</td>
<td>192.11.177.0/24</td>
<td>3616</td>
<td>0.15%</td>
<td>10455 - LUCENT-CIO - Lucent Technologies Inc.</td>
</tr>
<tr>
<td>21</td>
<td>192.11.147.0/24</td>
<td>3616</td>
<td>0.15%</td>
<td>10455 - LUCENT-CIO - Lucent Technologies Inc.</td>
</tr>
<tr>
<td>22</td>
<td>135.245.152.0/23</td>
<td>3610</td>
<td>0.15%</td>
<td>10455 - LUCENT-CIO - Lucent Technologies Inc.</td>
</tr>
<tr>
<td>23</td>
<td>135.244.152.0/21</td>
<td>3610</td>
<td>0.15%</td>
<td>10455 - LUCENT-CIO - Lucent Technologies Inc.</td>
</tr>
<tr>
<td>24</td>
<td>135.245.152.0/21</td>
<td>3610</td>
<td>0.15%</td>
<td>10455 - LUCENT-CIO - Lucent Technologies Inc.</td>
</tr>
<tr>
<td>25</td>
<td>202.56.215.0/24</td>
<td>3170</td>
<td>0.13%</td>
<td>24560 - AIRTELBROADBAND-AS-AP Bharti Airtel Ltd., Telemmedia Services</td>
</tr>
<tr>
<td>26</td>
<td>137.14.144.0/21</td>
<td>3127</td>
<td>0.13%</td>
<td>246 - ASIFICS-GW-AS - 754th Electronic Systems Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>383 - AFCONC-BLOCK1-AS - 754th Electronic Systems Group</td>
</tr>
</tbody>
</table>
Receiving Prefixes
Receiving Prefixes

• There are three scenarios for receiving prefixes from other ASNs
 – Customer talking BGP
 – Peer talking BGP
 – Upstream/Transit talking BGP

• Each has different filtering requirements and need to be considered separately
Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer.
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP.
- If the ISP has NOT assigned address space to its customer, then:
 - Check in the five RIR databases to see if this address space really has been assigned to the customer.
 - The tool: whois --h jwhois.apnic.net x.x.x.0/24
 - (jwhois queries all RIR databases)
Receiving Prefixes: From Customers

- Example use of whois to check if customer is entitled to announce address space:

  ```
  $ whois -h whois.apnic.net 202.12.29.0
  netname: APNIC-AP
  descr: Asia Pacific Network Information Centre
  descr: Regional Internet Registry for the Asia-Pacific
  descr: 6 Cordelia Street
  descr: South Brisbane, QLD 4101
  descr: Australia
  country: AU
  admin-c: AIC1-AP
  tech-c: NO4-AP
  mnt-by: APNIC-HM
  mnt-irt: IRT-APNIC-AP
  changed: hm-changed@apnic.net
  status: ASSIGNED PORTABLE
  changed: hm-changed@apnic.net 20110309
  source: APNIC
  ```

Portable – means its an assignment to the customer, the customer can announce it to you
Receiving Prefixes:
From Customers

- Example use of whois to check if customer is entitled to announce address space:

```
$ whois -h whois.ripe.net 193.128.0.0
inetnum:        193.128.0.0 - 193.133.255.255
netname:        UK-PIPEX-193-128-133
descr:          Verizon UK Limited
country:        GB
org:            ORG-UA24-RIPE
admin-c:        WERT1-RIPE
tech-c:         UPHM1-RIPE
status:         ALLOCATED UNSPECIFIED
remarks:        Please send abuse not...
mnt-by:         RIPE-NCC-HM-MNT
mnt-lower:      AS1849-MNT
mnt-routes:     AS1849-MNT
mnt-routes:     WCOM-EMEA-RICE-MNT
mnt-irt:        IRT-MCI-GB
source:         RIPE # Filtered
```

ALLOCATED – means that this is Provider Aggregatable address space and can only be announced by the ISP holding the allocation (in this case Verizon UK)
Receiving Prefixes from customer: Cisco IOS

• For Example:
 – downstream has 100.50.0.0/20 block
 – should only announce this to upstreams
 – upstreams should only accept this from them

• Configuration on upstream

 router bgp 100
 neighbor 102.102.10.1 remote-as 101
 neighbor 102.102.10.1 prefix-list customer in
 !
 ip prefix-list customer permit 100.50.0.0/20
Receiving Prefixes: From Peers

• A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table
 – Prefixes you accept from a peer are only those they have indicated they will announce
 – Prefixes you announce to your peer are only those you have indicated you will announce
Receiving Prefixes: From Peers

• Agreeing what each will announce to the other:
 – Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates
 OR
 – Use of the Internet Routing Registry and configuration tools such as the IRRToolSet
 www.isc.org/sw/IRRToolSet/
Receiving Prefixes from peer: Cisco IOS

• For Example:
 – Peer has 220.50.0.0/16, 61.237.64.0/18 and 81.250.128.0/17 address blocks

• Configuration on local router

```
router bgp 100
    neighbor 102.102.10.1 remote-as 101
    neighbor 102.102.10.1 prefix-list my-peer in

! ip prefix-list my-peer permit 220.50.0.0/16
ip prefix-list my-peer permit 61.237.64.0/18
ip prefix-list my-peer permit 81.250.128.0/17
ip prefix-list my-peer deny 0.0.0.0/0 le 32
```
Receiving Prefixes: From Upstream/Transit Provider

• Upstream/Transit Provider is an ISP who you pay to give you transit to the **WHOLE** Internet

• Receiving prefixes from them is not desirable unless really necessary
 – Traffic Engineering – see BGP Multihoming presentations

• Ask upstream/transit provider to either:
 – originate a default-route
 OR
 – announce one prefix you can use as default
Receiving Prefixes:
From Upstream/Transit Provider

• Downstream Router Configuration

 router bgp 100
 network 101.10.0.0 mask 255.255.224.0
 neighbor 101.5.7.1 remote-as 101
 neighbor 101.5.7.1 prefix-list infilter in
 neighbor 101.5.7.1 prefix-list outfilter out

 ip prefix-list infilter permit 0.0.0.0/0

 ip prefix-list outfitter permit 101.10.0.0/19
Receiving Prefixes:
From Upstream/Transit Provider

• Upstream Router Configuration

 router bgp 101
 neighbor 101.5.7.2 remote-as 100
 neighbor 101.5.7.2 default-originate
 neighbor 101.5.7.2 prefix-list cust-in in
 neighbor 101.5.7.2 prefix-list cust-out out

 !
 ip prefix-list cust-in permit 101.10.0.0/19
 !
 ip prefix-list cust-out permit 0.0.0.0/0
Receiving Prefixes: From Upstream/Transit Provider

• If necessary to receive prefixes from any provider, care is required.
 – Don’t accept default (unless you need it)
 – Don’t accept your own prefixes

• For IPv4:
 – Don’t accept private (RFC1918) and certain special use prefixes:
 http://www.rfc-editor.org/rfc/rfc5735.txt
 – Don’t accept prefixes longer than /24 (?)

• For IPv6:
 – Don’t accept certain special use prefixes:
 http://www.rfc-editor.org/rfc/rfc5156.txt
 – Don’t accept prefixes longer than /48 (?)
Receiving Prefixes: From Upstream/Transit Provider

- Check Team Cymru’s list of “bogons”
 www.team-cymru.org/Services/Bogons/http.html

- For IPv4 also consult:
 www.rfc-editor.org/rfc/rfc6441.txt

- For IPv6 also consult:
 www.space.net/~gert/RIPE/ipv6-filters.html

- Bogon Route Server:
 www.team-cymru.org/Services/Bogons/routeserver.html
 - Supplies a BGP feed (IPv4 and/or IPv6) of address blocks which should not appear in the BGP table
Receiving IPv4 Prefixes

router bgp 100
 network 101.10.0.0 mask 255.255.224.0
 neighbor 101.5.7.1 remote-as 101
 neighbor 101.5.7.1 prefix-list in-filter in

 !
 ip prefix-list in-filter deny 0.0.0.0/0 ! Default
 ip prefix-list in-filter deny 0.0.0.0/8 le 32 ! Network Zero
 ip prefix-list in-filter deny 10.0.0.0/8 le 32 ! RFC1918
 ip prefix-list in-filter deny 100.64.0.0/10 le 32 ! RFC6598 shared address
 ip prefix-list in-filter deny 101.10.0.0/19 le 32 ! Local prefix
 ip prefix-list in-filter deny 127.0.0.0/8 le 32 ! Loopback
 ip prefix-list in-filter deny 169.254.0.0/16 le 32 ! Auto-config
 ip prefix-list in-filter deny 172.16.0.0/12 le 32 ! RFC1918
 ip prefix-list in-filter deny 192.0.2.0/24 le 32 ! TEST1
 ip prefix-list in-filter deny 192.168.0.0/16 le 32 ! RFC1918
 ip prefix-list in-filter deny 198.18.0.0/15 le 32 ! Benchmarking
 ip prefix-list in-filter deny 198.51.100.0/24 le 32 ! TEST2
 ip prefix-list in-filter deny 203.0.113.0/24 le 32 ! TEST3
 ip prefix-list in-filter deny 224.0.0.0/3 le 32 ! Multicast
 ip prefix-list in-filter deny 0.0.0.0/0 ge 25 ! Prefixes >/24
 ip prefix-list in-filter permit 0.0.0.0/0 le 32
Receiving IPv6 Prefixes

```
router bgp 100
    network 2020:3030::/32
    neighbor 2020:3030::1 remote-as 101
    neighbor 2020:3030::1 prefix-list v6in-filter in

ipv6 prefix-list v6in-filter permit 2001::/32
    ! Teredo
ipv6 prefix-list v6in-filter deny 2001::/32 le 128
    ! Teredo subnets
ipv6 prefix-list v6in-filter deny 2001:db8::/32 le 128
    ! Documentation
ipv6 prefix-list v6in-filter permit 2002::/16
    ! 6to4
ipv6 prefix-list v6in-filter deny 2002::/16 le 128
    ! 6to4 subnets
ipv6 prefix-list v6in-filter deny 2020:3030::/32 le 128
    ! Local Prefix
ipv6 prefix-list v6in-filter deny 3ffe::/16 le 128
    ! Old 6bone
ipv6 prefix-list v6in-filter permit 2000::/3 le 48
    ! Global Unicast
ipv6 prefix-list v6in-filter deny ::/0 le 128
```
Receiving Prefixes

• Paying attention to prefixes received from customers, peers and transit providers assists with:
 – The integrity of the local network
 – The integrity of the Internet

• Responsibility of all ISPs to be good Internet citizens
Prefixes into iBGP
Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
 - don’t use IGP

- Point static route to customer interface

- Use BGP network statement

- As long as static route exists (interface active), prefix will be in BGP
Router Configuration: network statement

• Example:

interface loopback 0
 ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
 ip unnumbered loopback 0
 ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
 network 215.34.10.0 mask 255.255.252.0
Injecting prefixes into iBGP

• Interface flap will result in prefix withdraw and reannounce
 – use “ip route . . . permanent”

• Many ISPs redistribute static routes into BGP rather than using the network statement
 – Only do this if you understand why
Router Configuration: redistribute static

• Example:
 ip route 215.34.10.0 255.255.252.0 Serial 5/0

 router bgp 100
 redistribute static route-map static-to-bgp

 route-map static-to-bgp permit 10
 match ip address prefix-list ISP-block
 set origin igp

 ip prefix-list ISP-block permit 215.34.10.0/22 le 30
Injecting prefixes into iBGP

• Route-map ISP-block can be used for many things:
 – setting communities and other attributes
 – setting origin code to IGP, etc

• Be careful with prefix-lists and route-maps
 – absence of either/both means all statically routed prefixes go into iBGP
Summary

• Best Practices Covered:
 – When to use BGP
 – When to use ISIS/OSPF
 – Aggregation
 – Receiving Prefixes
 – Prefixes into BGP
Acknowledgement and Attribution

This presentation contains content and information originally developed and maintained by the following organisation(s)/individual(s) and provided for the African Union AXIS Project

Cisco ISP/IXP Workshops

Philip Smith: - pfsinoz@gmail.com

www.apnic.net
BGP Best Current Practices

End