Cadre de Développement de l’Irrigation et de Gestion de l’Eau Agricole en Afrique

Original: anglais

2020
Table des Matières

Remerciements ... vi
Avant-Propos .. vii
Acronymes ... x

1. Introduction ... 1

1.1 Contexte du Cadre ... 1
1.2 Justification .. 3
1.3 Méthodologie et structure du cadre .. 4
1.4 Catégorisation du spectre des pratiques de gestion de l’eau agricole .. 5
1.5 Terminologie – assurer une compréhension commune ... 7

2. Défis, opportunités et leçons apprises ... 8

2.1 Défis et opportunités .. 8
 2.1.1 Croissance démographique et demande alimentaire accrue .. 8
 2.1.2 Une tendance à l’augmentation du stress hydrique à travers l’Afrique 9
 2.1.3 Urbanisation et nouveaux marchés .. 9
 2.1.4 Ressources d’irrigation sous-utilisées .. 10
 2.1.5 Agriculture pluviale : s’attaquer à la faible productivité .. 11
 2.1.6 Impacts des changements climatiques et de la variabilité climatique sur l’agriculture africaine .. 11
 2.1.7 La féminisation de l’agriculture et pratiques de gestion de l’eau agricole 12
 2.1.8 L’expansion rapide du développement de l’irrigation porté par l’agriculteur 12
2.1.9 Systèmes de gestion de l’Information et capacités des agences de développement 13
2.1.10 Les multiples usages de l’eau .. 14
2.1.11 Tenure foncière ... 14

2.2 Leçons apprises .. 15
2.2.1 L’irrigation tire de la pauvreté et relève du bon sens au plan économique 15
2.2.2 La GEA entraîne une productivité accrue de la terre et de l’eau 16
2.2.3 La petite irrigation a des retombées économiques plus grandes que celles de l’irrigation à grande échelle ... 16
2.2.4 La petite irrigation a un plus grand potentiel de ressources pour une expansion viable .. 17
2.2.5 Il y a un grand risque d’échec des programmes d’irrigation à pompe exécutés par des groupements ... 17
2.2.6 Les méthodes de récolte et de conservation de l’eau renforcent la résilience de l’agriculture pluviale .. 17
2.2.7 Les rendements peuvent être considérablement augmentés à travers l’intensification .. 18
2.2.8 Une approche fondée sur le bassin versant permet une planification stratégique .. 19
2.2.9 Planifier conformément aux moyens et à la volonté de payer 19
2.2.10 Les projets de gestion intégrée de l’eau agricole sont plus réussis. 20

3. Pistes de développement et interventions ... 22

3.1 Introduction .. 22
3.2 PISTE 1 : Gestion améliorée de la maîtrise de l’eau et des bassins versants dans un environnement pluvial .. 23
3.3 PISTE 2 : Développement de l’irrigation porté par les agriculteurs 24
3.4 PISTE 3 : Modernisation/réhabilitation des systèmes d’irrigation 25
3.5 PISTE 4 : Utilisation non-conventionnelle de l’eau pour l’irrigation 26
3.6 Questions transversales de développement et interventions clés nécessaires ...27
3.6.1 Inclusivité dans le développement de l’irrigation et la GEA..27
3.6.2 Implication du secteur privé...28
3.6.3 Adaptation aux changements climatiques et résilience..28
3.6.4 Microcrédit et mécanismes de financements agricoles..29
3.6.5 Politiques et institutions et mécanismes de gouvernance...30
3.6.6 Améliorer la qualité de l’eau et du sol et résoudre d’autres problèmes environnementaux ...31
3.6.7 Recherche, suivi, évaluation et transfert des connaissances..32

3.7 Conclusions et recommandations ...33

4.Références ...35
Remerciements

La Commission de l’Union Africaine exprime ses remerciements et sa gratitude auxnombreuses personnes, aux experts techniques et aux organisations qui ont apporté leurs contributions à travers leurs commentaires, leurs suggestions et leurs corrections, à l’élaboration du présent Cadre de DIGEA. Nous sommes très reconnaissants aux experts techniques et aux parties prenantes pour leurs commentaires et leurs contributions reçus lors des ateliers de présentation et de validation ainsi que des revues indépendantes.

Avant-Propos

Il convient de noter que ce travail sur la question de l’irrigation et de la gestion de l’eau agricole vient à point nommé, au moment où il y a un regain d’intérêt pour l’intensification de l’agriculture africaine. Le défi de nourrir des populations en pleine croissance est énorme. Il en est de même pour les défis de trouver des solutions à la faible productivité des ressources agricoles face à l’urbanisation galopante, à la variabilité climatique sans cesse grandissante, aux tendances à la mondialisation et aux régimes alimentaires changeants ainsi que la nécessité de créer des opportunités d’emploi fiables pour ralentir la migration externe. Le potentiel considérable du secteur agricole du continent à fournir des moyens d’existence durables et améliorés, une industrialisation tirée par l’agriculture et un développement économique global ne peut être pleinement exploité sans une intensification des intrants productifs. Le renforcement des capacités de résilience des moyens d’existence agricoles est fondamental pour l’atteinte des objectifs de développement tels qu’énoncés dans l’Agenda 2063 de l’Union Africaine et les ODD 2030 des Nations Unies. Il est donc tout à fait pertinent que l’Union Africaine à travers la Déclaration de Malabo 2014 définisse le futur immédiat de la plupart des économies africaines autour de la croissance et de la transformation agricoles.

Le Cadre de Développement de l’Irrigation et de Gestion de l’Eau Agricole (DIGEA) de l’Union Africaine a été conçu dans un contexte de choc climatique croissant avec son corollaire d’impacts négatifs sur la production agricole et de réduction des capacités des moyens de subsistance tributaires de l’agriculture pluviale sur le continent. Une série de Décisions et de Déclarations des Chefs d’Etat et de Gouvernement Africains sur la nécessité d’adopter et de vulgariser les pratiques de la gestion durable de l’eau agricole ainsi que l’utilisation à grande échelle de l’irrigation chez les petits exploitants et les producteurs de cultures de rente, ont été les facteurs de motivation qui ont donné naissance au Cadre de DIGEA.

Il est indéniable que l’adoption de pratiques d’irrigation et de gestion de l’eau agricole permettra de résoudre le problème d’accès à l’eau et d’intensification de l’utilisation des intrants dans le secteur agricole. En effet, les cultures ont besoin d’eau et non de pluie. Afin de garantir un accès fiable à l’eau dont les agriculteurs ont besoin pour augmenter la production et atténuer les effets de la sécheresse, le présent Cadre établit quatre grands axes (qui ne sont pas mutuellement exclusifs) de développement de la gestion de l’eau agricole sur le continent. Ce Cadre traite des questions transversales du développement social et technique dans la gestion durable de l’eau agricole. Il prend en compte les diverses conditions écologiques, climatiques et socio-économiques à travers le continent. Ce Cadre traite également des défis de mise en œuvre et des éléments de durabilité, sous l’angle des leçons tirées des efforts antérieurs de développement.

Je voudrais exprimer ma reconnaissance à l’Equipe de l’UA-SAFGRAD pour avoir pris l’initiative d’élaborer ce schéma directeur. C’est un grand plaisir pour moi de recommander ce Cadre de DIGEA à tous les acteurs et les planificateurs de l’agriculture aux niveaux national, régional et continental. Au moment où nous œuvrons à la croissance et à la transformation de l’agriculture africaine pour une amélioration des conditions de vie et une prospérité partagée, l’on espère que ce Cadre sera une source d’inspiration et de galvanisation de l’intérêt pour le développement de l’irrigation et la gestion de l’eau agricole à grande échelle. Je lance un appel aux partenaires au développement en vue d’une mobilisation des appuis pour la mise en œuvre du présent Cadre, dans le but de produire l’impact souhaité.

S. E. Amb. Josefa Leonel Correia Sacko
Commissaire de l’Economie Rurale et Agriculture
Commission de l’Union Africaine
Un accès fiable à l’eau est essentiel pour augmenter la production vivrière et atténuer la sécheresse à travers l’Afrique. Cela d’autant plus que les changements climatiques apportent une plus grande incertitude et la demande alimentaire augmente avec la croissance démographique. L’Union Africaine (UA) a activement répondu à ces défis, en mettant en place des programmes et des stratégies pour soutenir les États Membres. Par exemple, elle a mis en place le Programme Détailé de Développement de l’Agriculture en Afrique (PDDAA) et la Déclaration de Malabo de 2014 sur la Croissance et la Transformation Accélérées de l’Agriculture en Afrique pour une Prospérité Partagée et de meilleures conditions de vie. Cela constitue le moteur du développement agricole à travers l’Afrique et soutient la première aspiration de l’Agenda 2063 de l’UA d’”une Afrique prospère basée sur la croissance inclusive et le développement durable”.

Sur le terrain, l’Afrique connaît une croissance élargie et rapide de l’irrigation en particulier chez les petits producteurs de cultures de rente. La superficie totale sous Gestion de l’eau agricole (GEA) en Afrique, y compris l’irrigation et autres technologies de gestion de l’eau est officiellement estimée à 18,6 Mha\(^1\). Cependant, les nouvelles preuves révèlent clairement que cette superficie est sous-estimée. Par exemple, le développement de l’irrigation porté par les agriculteurs (DIA) couvre une grande superficie qui n’est pas officiellement enregistrée et prise en compte dans les bases de données nationales. Bien que le potentiel inexploité d’extension de la GEA sur le continent reste considérable, il est limité par les contraintes environnementales et économiques locales. Les zones potentielles restantes correspondent aux projections d’extension de la superficie sous GEA nécessaire pour satisfaire les besoins alimentaires d’ici 2050. Bien que ces objectifs semblent modestes, le financement des investissements requis pour les atteindre est substantiel. Le Cadre de Développement de l’Irrigation et de Gestion de l’Eau Agricole (DIGEA) en Afrique vise à appuyer les stratégies régionales et nationales et la mise en œuvre de projets pour l’atteinte des objectifs continentaux, à travers la promotion d’initiatives nationales de DIGEA. Les questions et opportunités clés sont identifiées dans le présent cadre. Il fournit une base pour une discussion permanente sur les priorités en matière d’eau pour l’agriculture permettant l’acquisition de connaissances plus factuelles.

Le présent cadre est structuré autour de quatre axes stratégiques de GEA ou pistes de développement des ressources en eau pour l’agriculture comme suit : la GEA dans l’agriculture pluviale; l’irrigation par l’agriculteur lui-même; le programme de modernisation; et l’utilisation non-conventionnelle de l’eau pour l’irrigation. Les questions transversales portent sur des thèmes et des domaines opérationnels qui
doivent être mis en exergue et soutenus afin de récolter les fruits de la GEA et promouvoir son extension ainsi que sa durabilité. Le cadre fait appel à une large vision des opportunités tout en prenant en compte les spécificités nationales et la nécessité d’exploiter les pistes parallèles en vue d’accélérer l’adoption de méthodes de GEA du point de vue de la ressource et du climat. Le défi pour les décideurs politiques nationaux est d’utiliser la réforme institutionnelle pour faciliter et permettre le processus qui soutient le développement de l’irrigation par l’agriculteur, l’accès aux technologies, aux financements et aux marchés agricoles et sécuriser la tenure foncière et hydraulique, en particulier pour les partenariats entre le secteur privé et les communautés.
Acronymes

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Agriculture Intelligente face au Climat</td>
</tr>
<tr>
<td>AI&D</td>
<td>Agence d’Irrigation et de Drainage</td>
</tr>
<tr>
<td>AUD</td>
<td>Agence d’Irrigation et de Drainage de l’Union Africaine</td>
</tr>
<tr>
<td>ASS</td>
<td>Afrique Sub-Saharienne</td>
</tr>
<tr>
<td>B2B</td>
<td>Business-à-business</td>
</tr>
<tr>
<td>B2C</td>
<td>Business-à-consommateur</td>
</tr>
<tr>
<td>CER</td>
<td>Communauté Economique Régionale</td>
</tr>
<tr>
<td>DIA</td>
<td>Développement de l’Irrigation porté par l’Agriculteur</td>
</tr>
<tr>
<td>DIGEA</td>
<td>Développement de l’Irrigation et Gestion de l’Eau pour l’Agriculture</td>
</tr>
<tr>
<td>EM</td>
<td>Etats Membres</td>
</tr>
<tr>
<td>FAO</td>
<td>Organisation des Nations Unies pour l’Alimentation et l’Agriculture</td>
</tr>
<tr>
<td>GEA</td>
<td>Gestion de l’Eau pour l’Agriculture</td>
</tr>
<tr>
<td>GFM</td>
<td>Gestion, Fonctionnement et Maintenance</td>
</tr>
<tr>
<td>GIRE</td>
<td>Gestion Intégrée des Ressources en Eau</td>
</tr>
<tr>
<td>GRE</td>
<td>Gestion des Ressources en Eau</td>
</tr>
<tr>
<td>IIGE</td>
<td>Institut International de Gestion de l’Eau</td>
</tr>
<tr>
<td>Mha</td>
<td>Millions d’hectares</td>
</tr>
<tr>
<td>MOM</td>
<td>Management des Opérations de Marché</td>
</tr>
<tr>
<td>ODD</td>
<td>Objectifs de Développement Durable</td>
</tr>
<tr>
<td>OUE</td>
<td>Organisation des Usagers de l’Eau</td>
</tr>
<tr>
<td>PAYG</td>
<td>Paiement à l’utilisation</td>
</tr>
<tr>
<td>PDDAA</td>
<td>Programme Détailé de Développement de l’Agriculture</td>
</tr>
<tr>
<td>RCE</td>
<td>Récolte et Conservation de l’Eau</td>
</tr>
<tr>
<td>REP</td>
<td>Récolte de l’Eau de Pluie</td>
</tr>
<tr>
<td>TREI</td>
<td>Taux de Rentabilité Economique Interne</td>
</tr>
<tr>
<td>UA</td>
<td>Union Africaine</td>
</tr>
<tr>
<td>UA-SAFGRAD</td>
<td>Union Africaine –Recherche et Développement des Cultures Vivrières en Zones Semi-Arides</td>
</tr>
<tr>
<td>ZLECAF</td>
<td>Zone de Libre Echange Continentale Africaine</td>
</tr>
</tbody>
</table>
1. Introduction

1.1 Contexte du Cadre

Le manque d’accès fiable aux ressources en eaux en quantités et en qualité suffisantes constitue une contrainte majeure à la production agricole. Cet accès est une priorité dans les efforts déployés pour éradiquer la pauvreté. Au plan mondial, les gouvernements et les producteurs sont confrontés à de nouveaux défis liés à la qualité et à la quantité de l’eau à cause de la croissance démographique rapide, l’urbanisation et la pollution, aux impacts des changements climatiques et de la variabilité climatique sur les ressources en eau et la compétition intersectorielle croissante pour l’eau. L’amélioration de la GEA pour relever ces défis et par la suite contribuer à l’amélioration des moyens d’existence et impulse un développement économique, constitue une priorité pour le continent africain et l’agenda mondial.

Les acteurs politiques à tous les niveaux manifestent un grand intérêt pour la promotion du développement et des pratiques de l’irrigation (DIGEA) comme catalyseur du développement économique et rural, étant donné en particulier, les incertitudes aggravées dues aux changements climatiques. La GEA peut représenter une réponse rapide visant à réduire les conséquences de la sécheresse accrue et plus sévère en doublant ou en triplant l’intensification de l’agriculture et en augmentant la productivité des ressources en eau, des terres et des cultures. La productivité agricole et les revenus des ménages verraient une augmentation grâce à la multiplication des cycles de production et des périodes prolongées de production qui seraient facilités par l’adoption des pratiques de DIGEA. Le deuxième Objectif de Développement Durable (ODD#2) est de mettre fin à la faim, atteindre la sécurité alimentaire et une meilleure nutrition et promouvoir l’agriculture durable. L’ODD#2 peut être réalisé en doublant la productivité agricole et les revenus des petits producteurs de cultures vivrières. En outre, l’on peut garantir des systèmes de production vivrière durable à travers la mise en œuvre de pratiques agricoles résilientes qui augmentent la productivité et la production. L’augmentation substantielle de l’efficacité de l’utilisation de l’eau à travers tous les secteurs et la mise en œuvre d’une gestion intégrée des ressources en eau (GIRE) à tous les niveaux sont des indicateurs clés de l’ODD#6 “garantir l’accès de tous à l’eau et à l’assainissement et assurer une gestion durable des ressources en eau” (ODD#6).

C’est dans ce sens que l’Union Africaine, à travers plusieurs décisions et de déclarations des Chefs d’Etat et de Gouvernement, a toujours placé la gestion des ressources en eau (GRE) et l’irrigation au premier plan de son agenda de développement. Il s’agit: a) du Programme Détailé de
1.2 Justification

Le taux de croissance démographique en Afrique est estimé à plus de 3 pourcent par an tandis que la moyenne mondiale est de seulement 1,2 pourcent par an. La production vivrière n’a pas suivi le rythme de la croissance démographique en Afrique et cela a entraîné une forte insécurité alimentaire et nutritionnelle et une facture plus lourde des importations de denrées alimentaires pour le continent. Selon les estimations de l’Institut International de Gestion de l’Eau (IWMI) une augmentation de 29 pourcents des terres irriguées sera nécessaire d’ici l’an 2025 pour pérenniser la production vivrière et réduire la pauvreté sur le continent. Par conséquent, il existe une forte pression sur l’agriculture, et en particulier sur le secteur de l’irrigation afin d’assurer la sécurité alimentaire en Afrique. Le développement des systèmes d’irrigation occupe donc une place importante dans l’agenda politique de l’Afrique.

Le cadre de DIGEA découle aussi bien de l'analyse ci-dessus que de l'environnement politique et vise par conséquent à soutenir les équipes régionales et nationales pour une concentration stratégique des efforts dans la poursuite des cibles au niveau élevé de l'UA et celles des pays en matière de DIGEA. Il devrait stimuler le développement de l’irrigation et la gestion des ressources en eau pour l’agriculture en fournissant un ensemble d’options de développement susceptibles d’être exploitées. L’on espère que ce cadre servira de catalyseur pour de nouvelles idées de GEA et fournira les détails des interventions et des plans de projets et interventions institutionnels régionaux et nationaux. Le cadre offre une orientation et une vision continentales articulées sur le développement de l’irrigation et la GEA, qui doivent susciter l’intérêt et aider les EM à mettre en place des aménagements et récolter les avantages. Il offre également une base d’engagement des CER et des EM à formuler et à opérationnaliser un cadre global de développement de l’irrigation et de GEA aux niveaux régional et national.

1.3 Méthodologie et structure du cadre

Le cadre est structuré en trois chapitres. Le Chapitre Un porte sur l’introduction, la justification et les défis clés ainsi que les opportunités de développement de la GEA en Afrique. Le Chapitre Deux souligne les questions qui entourent le développement de l’irrigation et la GEA en Afrique. Le Chapitre Trois identifie les pistes de développement, les interventions clés nécessaires pour leur
mise en œuvre réussie et les sept questions transversales. Ce Chapitre contient par ailleurs la conclusion et les recommandations.

1.4 Catégorisation du spectre des pratiques de gestion de l’eau agricole

Il existe de nombreuses différentes pratiques de GEA et il convient donc de les catégoriser afin de collecter et d’analyser les données pour comprendre leur état, types et échelle. Cette catégorisation est assez complexe parce que, dans de nombreux cas, différentes techniques sont combinées sur la même parcelle et de nombreuses variations de techniques sont également appliquées. Les pratiques de GEA sont plus faciles à comprendre quand elles sont perçues dans un cadre général. D’un côté, nous avons les pratiques de gestion non-équipées qui augmentent la disponibilité de l’eau autour de la racine de la plante, et de l’autre, les pratiques d’irrigation de haute technologie totalement maîtrisée. Entre les deux, existent les pratiques d’irrigation de décrue, de récolte des eaux, de l’eau de bas-fonds, d’irrigation supplémentaire, de pleine irrigation et autres technologies connexes de drainage. Le champ d’application du cadre de DIGEA couvre tout l’éventail des pratiques de gestion de l’eau agricole. La FAO divise l’éventail de la GEA en deux principaux groups, à savoir les superficies équipées pour l’irrigation et les superficies ayant d’autres formes de GEA (c’est-à-dire non-équipées) comme le montre la Figure 1.1.

1) Périmètres équipées pour l’irrigation: cela comprend toutes les superficies qui sont équipées pour une irrigation totalement maîtrisées et celles qui sont partiellement équipées, généralement dans les bas-fonds.

- Les technologies d’irrigation totalement ou partiellement maîtrisées y compris les systèmes d’irrigation par aspersion tels que les systèmes de gicleur, de goutte-à-goutte, microgicleur et les systèmes d’irrigation de surface tels que les bassins, les sillons et les bandes de bordure.

- L’irrigation équipée dans les bas-fonds et par épandage, telles que les terres humides cultivées, les fonds de vallées aménagés et la récolte des eaux impliquant des structures de maîtrise de l’eau et de drainage. Cette catégorie comprend aussi l’agriculture de décrue où des diguettes ou des structures retiennent l’eau de décrue.

2) Autres formes de GEA: il s’agit des superficies non-équipées où l’agriculture repose sur la gestion de l’eau du sol sous différentes formes. Cela est généralement entrepris dans les terres humides, les fonds de vallées aménagés et les superficies exploitées pendant la décrue, mais sans l’installation de structures de transport de l’eau. La récolte de l’eau (c’est-à-dire les techniques sur-le-champ) et la gestion de l’eau du sol entrent également dans cette catégorie.
(3) **Superficie de GEA (3) = (1) + (2)**

(3) Superficies de Gestion de l’Eau Agricole (SGEA)

(2) Autres formes de gestion de l’eau agricole (non-équipées)

- Terres humides, fonds de vallées, (fadama, dambo)
- Décrue, REP

(1) Superficie équipée pour l’irrigation

- Bas-fonds et irrigation par épandage
- Technologies d’irrigation totale ou partielle maîtrisée

Figure 1.1 : Catégorisation de l’irrigation et des superficies sous gestion de l’eau agricole de la FAO montrée sous forme de spectre (Source : FAO, amendée par les auteurs pour respecter le concept de spectre, après Molden (2007))
1.5 Terminologie – assurer une compréhension commune

La discussion sur l’eau agricole contient beaucoup de termes qui sont utilisés différemment par différentes personnes, organisations, groupes économiques, régions et pays. Il est par conséquent utile de clarifier les termes et les concepts, et à cet effet, une liste est fournie dans l’Encadré 1.1.

Gestion de l’Eau Agricole (GEA) : c’est un terme inclusif désignant les interventions des agriculteurs qui augmentent la disponibilité de l’eau autour de la racine, en plus des eaux de pluie naturellement infiltrées. La GEA comprend donc l’agriculture sur les bas aquifères (dambos, fadamas, zones humides, etc.), le paillage, l’agriculture de conservation, la construction de diguettes, l’agriculture de décrue, la récolte des eaux, l’irrigation et le drainage. La GEA comprend la gestion aussi bien de l’eau bleue (prélèvements) que l’eau verte (dans les plantes).2

Irrigation : transport et application d’eau bleue à la zone de la racine de la plante à l’aide d’un système d’irrigation system. 1.

Récolte de l’eau : collecte et concentration d’eau de pluie et d’eau de ruissellement sur l’exploitation et dans le réservoir d’eau du sol en utilisant des techniques de creusage de marre et d’infiltration (ex : à travers des fosses, des diguettes, de l’humus ou une application standard de compost, des tranchées et des rigoles), ou dans des structures de stockage (réservoirs d’eau sur le toit, bassins familiaux (champêtres) (non-doublés ou doublés avec du plastique résistant aux UV) et de petits barrages en terre4.

Aménagements à petite, moyenne et grande échelle : Le concept de grande ou petite échelle est utilisé comme descriptor relatif des exploitations individuelles, des aménagements ou des programmes. Il est important de savoir que beaucoup d’interventions de petite échelle, telle que l’extension paysanne impliquant des centaines de milliers ou des millions de petits exploitants, constituent efficacement une empreinte massive de développement à grande échelle.

Agriculture Intelligente face au Climat (AIC) : elle intègre trois dimensions (économique, sociale et environnementale) du développement durable en traitant conjointement des défis de la sécurité alimentaire et ceux du climat. Elle est composée de quatre principaux piliers : durabilité, adaptation et renforcement de la résilience, et là où cela est possible, la réduction et /ou l’élimination des émissions des gaz à effet de serre7.
2. Défis, opportunités et leçons apprises

L’agriculture irriguée dépend de nombreux facteurs et processus qui interagissent dans un système complexe comprenant des éléments humains, sociaux, environnementaux, techniques et biologiques. En répondant aux défis et en identifiant les opportunités, il est important d’évaluer les éléments techniques ‘durs’ de la GEA ainsi que les éléments sociaux et organisationnels ‘doux’ et leur interaction avec les externalités élargies du système agricole irrigué. Cette section met en exergue quelques-uns des défis clés et des opportunités de GEA en Afrique et donne le contexte des stratégies décrites à la Section 3.

2.1 Défis et opportunités

2.1.1 Croissance démographique et demande alimentaire accrue

Il est prévu que la population mondiale augmentera de 2,2 milliards de personnes d’ici 2050, soit une augmentation de 28% à compter de 2015. Plus de la moitié de cette croissance, estimée à 1,2 milliard de personnes, se produira en Afrique. Selon les estimations, la production agricole devra augmenter de 34% pour satisfaire les besoins alimentaires de l’Afrique du Nord en 2050, et de 112% pour ceux de l’Afrique Sub-Saharienne à compter de 2015. Aux plans économique et stratégique, il est impératif de réduire la lourde facture des importations de denrées alimentaires et d’intensifier la production et le commerce agricoles régionaux à travers le continent. Le développement de chaînes des valeurs agricoles compétitives et la mise en place de la Zone de Libre Echange Continentale Africaine (ZLECAf) représentent des opportunités pour une GEA accrue en Afrique.
2.1.2 Une tendance à l’augmentation du stress hydrique à travers l’Afrique

2.1.3 Urbanisation et nouveaux marchés

L’Afrique tout comme le reste du monde, connaît une urbanisation galopante avec l’exode rural des jeunes et des hommes principalement. Cette situation est due à la faiblesse des opportunités de génération de revenus ruraux aggravée par la faible productivité du travail découlant de la faible intensité de l’agriculture. L’urbanisation est associée à des revenus élevés et à un changement de mode de vie, qui entraînent des changements dans les préférences alimentaires; surtout une demande accrue de produits à forte valeur ajoutée tels que la viande, les produits laitiers, les fruits et les légumes. Ces changements dans les préférences alimentaires entraînent une augmentation des marchés des cultures à forte valeur ajoutée et celles-ci exigent également plus d’eau pour la production. Le facteur d’attraction de l’urbanisation accélère ainsi l’adoption de l’irrigation et présente une opportunité pour l’introduction de nouvelles technologies d’irrigation, telles que les pompes solaires qui ont une plus grande efficience énergétique, et les systèmes améliorés d’application de l’eau associées à l’agriculture péri-urbaine. Ces moteurs de
l’entrepreneuriat présentent une opportunité pour l’agriculture orientée vers le marché et explique la plus grande partie de l’expansion de l’irrigation au cours de ces deux dernières décennies.

2.1.4 Ressources d’irrigation sous-utilisées

Le développement de l’irrigation est un catalyseur important de la croissance agricole. Bien que le potentiel disponible soit presque totalement exploité dans le reste du monde, l’Afrique n’a pas encore développé une grande partie de son potentiel. Les données sur l’eau gérée pour l’agriculture et les zones équipées pour l’irrigation sont incertaines. Les incertitudes sont nombreuses à cause de l’absence de documentation de l’extension de l’irrigation portée par les agriculteurs. Cependant, les données disponibles indiquent que les superficies sous gestion agricole de l’eau en Afrique ne représentent que 36% du potentiel estimatif de 42,5 Mha irrigables. Les ressources en eau et en terres disponibles constituent une opportunité importante si l’on veut que la GEA étendue couvre les besoins alimentaires à l’avenir.
2.1.5 Agriculture pluviale : s’attaquer à la faible productivité

La majorité des populations pauvres d’Afrique vit dans les zones rurales et dépend de l’agriculture pour ses moyens d’existence. La superficie cultivée en Afrique est estimée à 271 Mha dont 242 Mha sont en Afrique Sub-Saharienne (ASS)². De manière générale, l’ASS est la région la moins productive du monde sur le plan agricole avec un manque à gagner de rendement de 76%, comparativement à une moyenne de 50% dans la plupart des pays à faibles revenus, et seulement 11% en Asie⁹. Cependant, il existe une grande variabilité dans le rendement céréalier moyen à travers l’Afrique. L’agriculture pluviale prédomine en Afrique même si les données sur l’irrigation et les zones de GEA sont obsolètes et incertaines. L’agriculture pluviale représente 58% de la production vivrière totale en Afrique et en ASS 99% de la production des principales céréales telles que le maïs, le mil et le sorgho¹¹. L’importance de l’agriculture pluviale dans l’approvisionnement en denrées alimentaires, combinée avec le grand manque à gagner du rendement, signifie que l’irrigation et les technologies de GEA, telles que la récolte de l’eau et l’agriculture de conservation, ont joué un rôle central dans les efforts d’intensification et de doublement de la productivité de l’agriculture.

Les technologies GEA peuvent favoriser l’intensification de l’agriculture pluviale

La plupart des céréales en Afrique proviennent de l’agriculture pluviale mais les rendements ne représentent que 24% de ce qui est réalisable au plan technique. La gestion de la fertilité, la sélection des semences et les technologies de l’eau pour l’agriculture, telles que la récolte des eaux sont des interventions clés intelligentes face au climat pour l’atteinte de l’intensification et de la résilience du système agricole.

2.1.6 Impacts des changements climatiques et de la variabilité climatique sur l’agriculture africaine

L’Afrique connaît déjà une variabilité dans la pluviométrie en saison sèche et humide, une désertification croissante et plus de risques de catastrophes liées à l’eau. Là où les prévisions indiquent de hautes températures, celles-ci vont exacerber les événements climatiques extrêmes de sécheresses et d’inondations⁷,¹². L’observation la plus constante montre une corrélation directe entre la montée des températures et l’augmentation de la demande en eau. La disponibilité réduite de l’eau en conséquence, aura le plus grand impact sur l’agriculture pluviale. Les projections optimistes du réchauffement climatique qui sous-estime éventuellement les impacts négatifs, montrent que les changements climatiques pourraient réduire les rendements des cinq principales céréales dans la plupart des zones africaines.
2.1.7 La féminisation de l’agriculture et pratiques de gestion de l’eau agricole

Les grandes mutations culturelles et sociales y compris l’urbanisation et la migration extérieure ont un impact sur l’équilibre entre hommes et femmes dans l’agriculture. Les données agrégées montrent que les femmes représentent approximativement 30% à 47% de la main-d’œuvre agricole à travers l’Afrique. Cela varie entre les régions, les pays et les cultures. L’Afrique du Nord a connu la plus grande augmentation de l’implication des femmes dans l’agriculture, avec deux fois plus de femmes engagées dans le secteur. La féminisation de l’agriculture nécessite une attention stratégique pour les questions de l’intégration du genre dans l’accès aux ressources productives, en particulier l’irrigation et les biens de GEA. La prise en compte du genre dans la composition et la gestion des organisations d’irrigateurs; L’adoption des technologies et le développement des compétences techniques; la tenure et l’administration foncières; et les innovations permettant d’économiser le temps et le travail, ont des impacts directs sur la vie des femmes et la sécurité alimentaire des ménages.

2.1.8 L’expansion rapide du développement l’irrigation porté par l’agriculteur

Le Développement de l’Irrigation porté par l’Agriculteur (DIA) a gagné une importance croissante en Afrique au cours de ces 20 dernières années et a été identifiée comme étant le processus dominant derrière l’expansion de l’eau agricole en Afrique. Ce secteur occupe des particuliers et de petits groupements qui font leurs propres investissements pour faire avancer l’irrigation et les pratiques de GEA. Il s’agit essentiellement de petits exploitants, de producteurs de cultures de rente; généralement des cultures horticoles pour les marchés urbains. Le DIA a connu une expansion rapide dans les régions d’Afrique de l’Ouest, de l’Est et Australe et des études montrent que les superficies sous GEA sont probablement beaucoup plus grandes que celles officiellement enregistrées.

La croissance rapide, le caractère entrepreneurial et l’orientation vers le marché du secteur du DIA représente une opportunité d’appui à travers un accès plus sécurisé à la terre et à l’eau, et un
meilleur accès aux technologies. L’adoption des nouvelles technologies d’irrigation est limitée à cause des coûts élevés d’investissement et de fonctionnement des technologies de pompes à carburants fossiles et de la difficulté à organiser les appuis en matière de carburant, de pièces de rechange et techniques. L’une des opportunités d’augmenter la rentabilité consiste à favoriser les marchés des pompes et d’équipements d’irrigation et réduire le triple défi du coût initial élevé, du risque élevé et des coûts élevés de service/maintenance liés aux pompes à essence et à diésel16. Les pompes solaires pour la petite irrigation, liées aux innovations de financement numériques sont déjà disponibles sur les marchés de l’Afrique de l’Est et de l’Ouest. Ces interventions et d’autres interventions technologiques peuvent permettre de relever le triple défi auquel les petits irrigateurs sont confrontés, et d’augmenter rapidement la rentabilité grâce aux économies d’énergie. Une deuxième opportunité découle du caractère non-réglementé inhérent au sous-secteur de l’irrigation mené par l’agriculteur. Les innovations technologiques et les interventions d’appui à l’agriculture qui entraînent une augmentation de la productivité et de la rentabilité peuvent être reliées aux activités de gestion des bassins. De cette façon, l’adoption des technologies visant à réduire les prélèvements d’eau, motivées par une rentabilité agricole et des bénéfices accrus pour les agriculteurs, peuvent soutenir une réglementation plus forte des bassins, réduire le stress hydrique et améliorer la planification de la distribution des ressources en eau et le respect de cette planification.

\textbf{2.1.9 Systèmes de gestion de l’Information et capacités des agences de développement}

2.1.10 Les multiples usages de l’eau

En réalité, nous utilisons l’eau qui est fournie par un système d’approvisionnement en eau ou d’irrigation pour différents besoins. L’approche basée sur les systèmes à usages multiples (SUM) reconnaît cela et vise à s’assurer que l’approvisionnement en eau à usages domestiques ou les systèmes d’irrigation sont conçus et gérés en gardant à l’esprit ces multiples usages et multiples usagers. Cette approche prend en compte un ensemble de divers usagers qui partagent l’infrastructure et la ressource en eau, et utilisent souvent des systèmes qui n’étaient pas conçus à ces débuts. La connaissance des SUM à différentes échelles est importante y compris : i) au niveau ménage, les SUM comprennent la consommation domestique, l’arrosage des jardins et l’abreuvement du petit bétail; ii) dans les aménagements d’irrigation, les SUM peuvent inclure l’approvisionnement en eau domestique aux villages et aux quartiers urbains; la production piscicole et avicole; l’abreuvement du bétail; la recharge de la nappe phréatique; la lessive et le bain; la nage et la récréation; et les besoins et impacts environnementaux; et iii) à l’échelle du bassin versant, les SUM couvrent l’usage multisectoriel dont les secteurs agricoles, hydroélectriques, urbain-domestiques, industriels, minier et récréatif. Une vision SUM offre un tableau plus complet des besoins en matière de gestion de l’eau et permet des solutions plus adaptées pour répondre aux défis de la gestion de la ressource et de prestation de services. La réponse à ces multiples besoins en compétition dans un monde frappé par le stress hydrique offre l’occasion d’améliorer les services et d’accroître l’équité entre les multiples usagers des systèmes et de réaliser de plus grandes retombées des investissements dans la GEA.

2.1.11 Tenure foncière

La tenure informelle constitue souvent, mais pas toujours, une contrainte au développement de l’irrigation. Le développement de l’irrigation porté par l’agriculteur s’est, par exemple étendu à travers l’ASS malgré les difficultés inhérentes aux systèmes coutumiers de tenure foncière. Il existe souvent des dispositions coutumières d’utilisation temporaire de superficies telles que les zones humides et pour des groupes spécifiques tels que les jeunes et les femmes. Sur les aménagements d’irrigation et dans les situations où des investissements dans l’irrigation non mobile sont nécessaires (tels que les tuyaux enterrés, ou les ouvrages en béton) l’insécurité de la tenure foncière est un démotivateur important de l’investissement. Quand les agriculteurs ne sont pas sûrs d’avoir des droits d’utilisation ou non, ils hésitent à investir dans des biens matériels tels que les clôtures, les infrastructures d’irrigation, les équipements agricoles et les ressources (mécanisation, stockage, etc.), ainsi que la gestion des sols telle que la fertilité et la structure des sols.
Il y a une raison à examiner la situation des irrigateurs indépendants qui utilisent souvent des équipements faciles à transporter (tels que les pompes, les tuyaux flexibles, et les seaux et cordes) différemment des irrigateurs de périmètres aménagés qui partagent des infrastructures hydrauliques fixes. Les schémas présentent des problèmes particuliers causés par le manque de mécanismes d’échange des terres qui implique une faible utilisation des terres parce que les agriculteurs qui ne peuvent pas produire n’ont aucun moyen sécurisé de louer ou de vendre leurs terres et ne peuvent pas être motivés à quitter ces terres et générer un revenu tiré de la location. Il y a aussi la question de la fragmentation de la terre due aux pratiques d’héritage, où le manque de mécanismes d’échange des terres qui entrave la consolidation des petites parcelles par les agriculteurs qui ont réussi à entreprendre une production commerciale et bénéficier ainsi d’économies d’échelle. L’opportunité qui se présente est celle de développer des mécanismes formalisés d’échange des terres qui peuvent être fondés sur des pratiques traditionnelles et coutumières, et les lois nationales là où elles existent. Une sécurité foncière accrue peut augmenter l’utilisation de la ressource que constituent les aménagements d’irrigation et motiver les investissements privés.

2.2 Leçons apprises

2.2.1 L’irrigation tire de la pauvreté et relève du bon sens au plan économique

Il est prouvé que l’adoption de l’irrigation et d’autres pratiques de GEA a des impacts positifs significatifs sur les ménages en termes de création de richesses et de sécurité alimentaire et également un impact positif sur le développement de l’économie en général. Il existe des avantages évidents et cachés ainsi que des avantages économiques privés et publics tirés des investissements des ménages dans l’irrigation et les pratiques de GEA. Les avantages locaux initiaux sont les emplois et les services dans le secteur de la construction. Cependant, les investissements se justifient par les gains des agriculteurs individuels et les retombées économiques plus élargies. Ces avantages individuels et économiques dépendent de l’augmentation réelle de la production du champ rendue possible par la fourniture aux agriculteurs d’un meilleur accès à l’eau pour la production. Les revenus des ménages sont enregistrés dans de nombreuses études dans les pays en développement, montrant une augmentation d’environ 1,5 à 3 fois. Les avantages économiques et de bien-être liés à l’amélioration de la santé, la protection des terres, la substitution des importations, la protection sociale et le développement rural sont dus aux investissements dans l’irrigation et dans les pratiques de GEA. Au niveau économique, la performance des aménagements d’irrigation a été mondialement positive. Il y a également des effets d’entraînement avec des multiplicateurs économiques de l’ordre de 2,5 à 4. Ces multiplicateurs découlent des industries d’appui, des services et des activités dans les chaînes
de valeurs d’intrants et de produits, la demande de main-d’œuvre salariée et l’industrie de construction.

2.2.2 La GEA entraîne une productivité accrue de la terre et de l’eau

L’irrigation peut favoriser une augmentation de l’intensité des cultures de jusqu’à 300 pour cent dans les zones où la pluviométrie seulement permet une seule production par an, où l’eau est disponible et les températures favorables. Cela signifie une production équivalente ou supérieure d’aliments sur un tiers de la terre, réduisant ainsi la pression sur les terres, et aussi la perte éventuelle de biodiversité en limitant la nécessité de l’expansion de l’agriculture pluviale. L’agriculture irriguée est également associée à une plus grande productivité de l’eau (culture par goutte) grâce à une plus grande intensification avec des semences à plus haut rendement, l’adoption connexe de bonnes pratiques agricoles et un plus grand ratio récoltable par rapport à la matière végétale7,26.

2.2.3 La petite irrigation a des retombées économiques plus grandes que celles de l’irrigation à grande échelle

Les retours probables sur l’investissement dans la petite irrigation à travers l’Afrique sont beaucoup plus élevés que ceux des aménagements à grande échelle. Les TREI projetés pour les aménagements à grande échelle en Afrique étaient d’environ 6 pour cent par rapport à un TREI moyen de 28 pour cent pour la petite irrigation27. Cependant, bien que l’expansion de la petite irrigation soit une priorité, les investissements dans les aménagements à grande échelle ont aussi un rôle à jouer. Ces investissements dans les grandes infrastructures sont toujours planifiés autour de la base de ressources naturelles, tels que les grands barrages existants, les réservoirs et les grands fleuves, où il existe des terres irrigables. Les cibles de l’expansion de l’irrigation sont peu susceptibles d’être atteints sans quelques aménagements publics à grande échelle10. L’approche la plus réussie au développement de l’irrigation s’exécute à travers des programmes de grande échelle qui constituent le moteur de nombreux systèmes de petite irrigation et de gestion de l’eau agricole. Là où les grands aménagements publics dominent le paysage de l’irrigation, l’accent sera nécessairement mis sur les améliorations techniques, en même temps que les réformes juridiques dans la loi portant sur l’eau, et la modernisation des organisations des programmes de gestion de l’eau. Ces interventions de modernisation doivent traiter de la transmission de l’eau, de l’efficience de l’énergie e, ainsi que de la restructuration opérationnelle pour s’assurer que la modernisation des institutions et des mécanismes de gouvernance va de pair avec les améliorations technologiques.
2.2.4 La petite irrigation a un plus grand potentiel de ressources pour une expansion viable

Une étude de la disponibilité des ressources foncières et hydrauliques montre que 23,5 Mha en Afrique pourraient être aménagés avec des TREI plus que marginaux \(^2\). Le rapport indique également que le potentiel d’expansion (92%) se trouve hors d’Afrique du Nord. Ces résultats montrent que le développement de la petite irrigation pourrait être très convenable pour 70-80 pourcent de la future zone d’expansion, et que les aménagements publics à grande échelle pourraient couvrir les 20-30 pourcent restants.

2.2.5 Il y a un grand risque d’échec des programmes d’irrigation à pompe exécutés par des groupements

Les expériences montrent que pour les groupements paysans utilisant des infrastructures d’irrigation partagées, les systèmes de gravité ont beaucoup plus de chance de réussir que les systèmes à pompe. Les défis du pompage comprennent les coûts de fonctionnement élevés, les problèmes techniques lors de l’adoption, un manqué d’appui technique opérationnel, les faibles organisations de gestion de l’eau pour MOM, et l’incapacité à honorer les coûts partagés de l’énergie (disponibilité et application des règlements). Ce n’est pas le pompage en tant que tel qui constitue le problème, mais plutôt la gestion du pompage collectif. L’irrigation à pompe individuelle est connue pour avoir beaucoup de succès à travers l’Afrique et l’Inde\(^1\), alors que les aménagements le sont moins. Les programmes de petits groupements sont vulnérables face aux défis de la complexité technique et des coûts de fonctionnement élevés et nécessitent des Organisations des Usagers de l’Eau (OUE) efficaces. L’expérience montre que les aménagements à pompe pour les groupements de petits exploitants doivent être mis en œuvre essentiellement pour la production de cultures à forte valeur ajoutée et soutenus par des initiatives de production agricole, de commercialisation et de création d’OUE.

2.2.6 Les méthodes de récolte et de conservation de l’eau renforcent la résilience de l’agriculture pluviale

Les ressources hydrauliques et foncières totales de l’Afrique ont le potentiel de booster la productivité agricole d’au moins 50 pourcent, et pourtant la plus grande partie de production vivrière du continent est entièrement pluviale. Les pratiques de gestion de l’eau dans les sols telles que la récolte et la conservation de l’eau (RCE) peuvent améliorer considérablement les résultats de l’agriculture pluviale. Ces pratiques de GEA augmentent la disponibilité de l’eau dans les plantes ainsi que la productivité de l’eau et des cultures. Elles aident à atténuer les impacts négatifs de la variabilité climatique et sont particulièrement sensibles aux innovations intelligentes face au climat qui conservent les ressources. En outre, elles permettent une diversité accrue des
plantes et l’achèvement du cycle de l’azote (pour limiter l’excès d’azote fixe et réduire les impacts négatifs sur l’environnement) et sont associées à des co-avantages environnementaux tels que la réduction des déchets et de la pollution⁴. Bien que les succès et les impacts positifs soient répandus et convaincants, une mise en garde est nécessaire contre des attentes trop optimistes selon lesquelles les techniques de RCE peuvent remédier la sécheresse, étant donné que l’absence de pluie signifie aussi une absence de ruissellement. L’eau stockée dans le réservoir d’eau du sol ne peut aller loin, en particulier dans les sols à texture légère et les endroits ayant un indice d’aridité élevé. Ainsi, les systèmes hybrides ayant un stockage localisé, une utilisation combinée de l’eau souterraine et de surface, et une irrigation supplémentaire sont importants dans certains endroits. Les pratiques de RCE doivent donc être envisagées en tenant compte des conditions particulières du site et des systèmes agricoles.

2.2.7 Les rendements peuvent être considérablement augmentés à travers l’intensification

Bien que les innovations agricoles et les technologies en plein développement continuent de booster la productivité, le taux d’augmentation des rendements agricoles ont ralenti de manière substantielle. Les pratiques de GEA augmentent l’intensification des ressources foncières étant donné que plusieurs cultures peuvent être entreprises. Les principaux avantages associés à l’intensification des ressources sous GEA sont les retombées accrues de la terre et du travail, la meilleure nutrition et la consommation stabilisée étant donné que les périodes de soudure sont éliminées ou réduites. Il existe un grand potentiel d’augmentations des rendements dans la plupart des pays africains au vu de leurs faibles rendements actuels sous GEA. Les rendements du riz et du blé représentent généralement la moitié de ceux des pays à revenus élevés et ceux du maïs moins d’un quart. L’évaluation globale de l’IWMI des avantages de la GEA a montré que 75% des aliments supplémentaires au cours de la prochaine décennie pourraient provenir des agriculteurs à faibles rendements du monde dont la production passera à 80% de la quantité réalisée par les agriculteurs à hauts rendements²⁸. L’irrigation offre également l’occasion de développer une agriculture intégrée qui favorise l’échange de nutriments et une utilisation efficiente de l’eau. L’intensification des intrants de production à travers l’agriculture mixte sous irrigation, réduit les coûts d’exploitation des ressources productives inactives et augmentent l’efficience des ressources utilisées. La planification des systèmes d’irrigation en combinant l’agriculture - élevage /aquaculture/aviculture, a été expérimentée à diverses échelles et jugée favorable au renforcement de la durabilité de ces systèmes d’irrigation. Des exemples d’entreprises mixtes agricoles-pastorales qui ont été mises en œuvre de manière durable et à grande échelle sont celles combinant le riz/poisson, volaille/poisson/riz et riz /canards, etc.
2.2.8 Une approche fondée sur le bassin versant permet une planification stratégique

La planification et la coordination de multiples initiatives créent des défis de GIRE. La raréfaction des ressources en eau et la compétition dans les diverses utilisations exigent des niveaux élevés de réglementation dans les grandes échelles spatiales à travers les bassins versants. La planification de l’intensification de l’utilisation de l’eau dans l’agriculture pluviale et pour les besoins d’irrigation peut mieux se faire à travers une approche fondée sur le bassin versant ou sur le paysage. Une telle approche est conforme à l’accent mis par le PDDAA sur l’amélioration de la gestion des bassins versants et des bassins. Une approche fondée sur le bassin versant permet de délimiter des frontières pratiques de sorte que des processus inclusifs, centrés sur l’agriculteur puissent être organisés sur la base de frontières pratiques pour l’évaluation de la ressource en eau et des initiatives institutionnelles visant à renforcer les droits des usagers et la réglementation. Pour être pratiques et rentables, les mécanismes hybrides de gestion de l’eau, les dispositions du droit coutumier et les permis et l’application de la réglementation différenciée peuvent être utilisés pour permettre une utilisation plus équitable et plus sécurisée des ressources en eau.

2.2.9 Planifier conformément aux moyens et à la volonté de payer

Les principes et les stratégies commerciaux sont essentiels dans l’agriculture irriguée pour permettre l’utilisation, la maintenance et le réinvestissement dans les infrastructures. Les petits exploitants ont les moyens de payer pour la maintenance MOM si une approche orientée vers le marché et le développement des chaînes des valeurs est adoptée. Cela représente un prérequis pour avoir les moyens et avoir la volonté de payer les frais des services d’irrigation. Les frais des services d’irrigation sont généralement inférieurs à 10 pourcent du budget agricole total mais peuvent être le double dans le cas des systèmes de petite pompe à essence et de tuyaux. Les agriculteurs indépendants de l’Afrique qui utilisent les pompes à essence ou diesel continuent à travailler année après année malgré les coûts élevés de fonctionnement, ce qui met en exergue le caractère abordable de l’irrigation. Cela n’équivaut pas malheureusement à la volonté de payer. La sensibilisation, le lobbying et des mesures stratégiques pour un changement d’attitude sont essentiels pour traduire l’accessibilité en volonté de payer. Les responsables gouvernementaux, le personnel technique des aménagements et les leaders traditionnels et religieux locaux sont des acteurs clés dans le processus de changement d’attitude.

Beaucoup de petits exploitants individuels utilisent leurs propres financements pour des équipements d’irrigation, mais pour les aménagements à grande échelle, le remboursement des investissements dans les infrastructures d’irrigation est moins courant. Là où la politique exige un recouvrement total des coûts des investissements et du MOM, des modèles de recouvrement des
coûts pourraient inclure un financement à long terme et à faible taux d’intérêt pour les petits agriculteurs. Il convient d’explorer également les possibilités d’inclure des structures commerciales de grande envergure comme ‘principaux locataires’, étant donné qu’elles ont une plus grande capacité de payer. La rentabilité est un pilier important dans la planification de la durabilité des systèmes d’ irrigation. L’utilisation de l’eau de mer dessalée pour l’irrigation, bien qu’elle offre une véritable source d’eau pour le développement de l’irrigation, doit intégrer une comparaison du coût énergétique du dessalement et du transport de l’eau aux avantages sociaux et privés attendus. Au fur et à mesure que les coûts de dessalement et du transport de l’eau de mer prélevée vers les sites de production deviennent abordables par rapport à d’autres sources d’eau, l’on espère que les pratiques de dessalement pour l’irrigation seront répandues en particulier dans les pays côtiers.

2.2.10 Les projets de gestion intégrée de l’eau agricole sont plus réussis.

Les leçons tirées aux niveaux mondial et africain montrent que le succès des projets a été étroitement lié à un accent accru sur les projets intégrés, qui prend en compte tous les facteurs techniques, institutionnels et agricoles, y compris le financement et la commercialisation. Il convient de trouver un équilibre entre le besoin de projets intégrés et les capacités et les aptitudes de mise en œuvre étant donné que les projets complexes présentent plus de défis d’exécution. Les facteurs de réussite comprennent les suivants :

- Les projets qui investissent dans les composantes institutionnelles ‘plus douces’ comprenant l’eau, la terre et le développement d’une entreprise agricole, de même que les infrastructures, avaient réalisé de meilleurs résultats ;
- Les taux élevés de retombées ont été fortement liés aux projets qui avaient un coût faible d’investissement par hectare, une plus haute productivité agricole et un modèle institutionnel adéquat ;
- Les projets d’appui aux systèmes d’irrigation gérés par l’agriculteur ou conjointement gérés avaient des coûts unitaires d’investissement plus faibles et avaient de meilleurs résultats comparativement aux projets ayant des systèmes gérés uniquement par une agence gouvernementale ;
- Les programmes qui permettent une utilisation combinée des eaux de surface et des eaux souterraines ont une meilleure performance à cause de leur plus grande fiabilité ;
- Les programmes par gravité des petits agriculteurs sont les plus susceptibles de réussir ; par contre les programmes à pompe des groupements ont plus de risques d’échec ;
• Les projets d’appui aux agriculteurs utilisant leurs propres systèmes indépendants ont plus de chance de réussite ; et

• Une approche fondée sur le développement de nombreux programmes à petite échelle dans le cadre d’un grand programme d’investissement pourrait générer de meilleurs résultats par rapport aux programmes à grande échelle.

Il a été également constaté que les retombées économiques des programmes de grande envergure se sont améliorées au fil du temps, ce qui signifie que les échecs peuvent être dus à la concentration techno-centrique observée au cours des décennies passées, plutôt qu’aux programmes intégrés dans un passé récent29.

Les opportunités et les leçons tirées de la discussion au Chapitre 2 ont éclairé la formulation et la description des pistes stratégiques au Chapitre 3.
3. Pistes de développement et interventions

3.1 Introduction

À l'avenir, l'aménagement des ressources en eau pour l’agriculture devra répondre à des besoins très variés qui impliquent plusieurs groupes cibles à travers des stratégies variées. Cela nécessitera la modernisation des anciens systèmes et la construction de nouveaux systèmes d’irrigation conventionnels à petite et grande échelle, formels et informels, ainsi que la récupération de l’eau agricole pluviale. La planification et la mise en œuvre devront combiner des approches conventionnelles basées sur les ressources, et des approches à caractère catalysant qui favorisent la création de marchés dynamiques et de processus sociaux. Le concept de pistes de développement est utilisé pour réaliser un programme d’aménagement de système d’irrigation et de GEA. Ces pistes sont combinées pour faciliter la croissance et le développement du secteur agricole conformément aux objectifs du PDDAA et de l'Agenda 2063. En résumé, l'Afrique du Nord aura tendance à mettre davantage l'accent sur la modernisation des périmètres d’irrigation existants, car la plupart des ressources sont déjà utilisées. Les autres régions d'Afrique ont un fort potentiel en matière irrigation. C’est en ce sens que l'expansion et la modernisation sont très importantes.

Les quatre pistes sont énumérées ci-dessous et sont présentées au fil des pages :

- **PISTE 1**: Maîtrise de l’eau améliorée et gestion des bassins versants dans l’agriculture pluviale
- **PISTE 2**: Développement de l’irrigation porté par l’agriculteur
- **PISTE 3**: Développement et modernisation des programmes d’irrigation
- **PISTE 4**: Utilisation non-conventionnelle de l’eau pour l’irrigation
3.2 PISTE 1 : Gestion améliorée de la maîtrise de l’eau et des bassins versants dans un environnement pluvial

<table>
<thead>
<tr>
<th>Description de la Piste de GEA</th>
<th>Caractère typique exploitation-entreprise</th>
</tr>
</thead>
</table>
| Gestion améliorée de la maîtrise d’eau et des bassins versants dans un environnement pluvial | - Petites exploitations pluviales et périmètres destinés à l’agriculture mixte.
- Agriculture de décrue et l’utilisation des aquifères peu profonds.
- Cultures dominantes : les céréales, les légumineuses et les tubercules.
- Les cultures intercalaires utilisant des cultures d’arbres, du fourrage et d’autres cultures exigeant de l’ombre sont courantes.
- Opportunités de synergies agriculture-élevage et intégration ferme-parcours.
- Travail familial comme principale source de travail. |

Justification : l’agriculture pluviale occupe plus de terres que l’irrigation en Afrique. L'agriculture pluviale est le système de production dominant pratiqué par la majorité des petits exploitants qui représente plus de 80% des producteurs agricoles dans des exploitations dispersées dans les zones rurales. Les zones rurales abritent la majorité des pauvres en Afrique. Il existe un potentiel énorme qui puisse combler le vide en termes de rendement et fournir des avantages socio-économiques importants grâce à des mesures de GEA qui renforcent l’intensité de la production et la résilience de ce groupe qui est plus vulnérable. La récupération de l'eau et les pratiques de gestion durable des terres, associées à une gamme de pratiques de l’AIC et mises en œuvre dans un cadre de gestion des bassins versants, constituent une approche qui a fait preuve de résultats positifs dans toute l'Afrique. L'ampleur de l'impact sur la superficie et le nombre d'agriculteurs, associée à des taux de rendement économique interne (TREI) élevés et à des faibles coûts d’exécution comparés au développement de l’irrigation à grande échelle, sont des éléments qui donnent à cette intervention toute son importance.

Interventions clés : il s’agit principalement des technologies RCE et des initiatives de réforme institutionnelle pour parvenir à une utilisation mieux coordonnée des ressources en eau locales en ce qui concerne les eaux de surface et souterraines (agriculture de décrue, etc.). Les technologies et les pratiques comprennent des méthodes à petite échelle, avec des travaux de dérivation et des techniques de bassins de crue, des étangs, des diguettes, des rigoles d’infiltration, le paillage, la gestion du drainage/érosion et l’agriculture de conservation aux niveaux de l’exploitation et du champ. Il y a entre autres :

- L’adoptions de technologies de GEA, y compris, *in situ, la récupération* des eaux de pluie, la planification des bassins versants et la mise en œuvre d’approches participatives, de GEA et de planification.

- L’attention portée aux zones d’irrigation et de GEA à fort potentiel, ainsi qu’aux zone à forte incidence pour la conservation des sols et des forêts, y compris les exigences en matière de l’utilisation des terres en amont et de captage d’irrigation en aval.

- L’introduction de techniques de récupération d’eau en réponse à la forme du relief, les préférences climatiques et de cultures à travers le pilotage, et les interventions en matière de connaissance et de prise de conscience.

- L’utilisation des principes de l’agriculture intelligente face au climat (AIC) et la promotion d’approches connexes adaptées aux conditions locales, aux modèles de culture et aux marchés.

- L’application des concepts d’écotype qui sont importants pour une planification efficace à grande échelle et une extension des technologies de GEA[30](#) [31].

- [30](#) : Le Plan de Gestion du Bassin du Rio Mantiqueira (PGBM) - São Paulo - Brazil.”
- [31](#) : “Agriculture in the Amazon: Practices and Strategies for Sustainable Development.”
3.3 PISTE 2 : Développement de l’irrigation porté par les agriculteurs

<table>
<thead>
<tr>
<th>Description de la Piste de GEA</th>
<th>Caractère typique exploitation-entreprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation individuelle (privée) pour les cultures à forte valeur ajoutée. Il s'agit des agriculteurs qui jouent un rôle capital dans l'amélioration de leur façon d'utiliser l'eau pour des activités agricoles. Ils se caractérisent par l'entrepreneuriat à titre indépendant, l'autofinancement et le goût accru du risque. Petite irrigation gérée par la communauté Ce sont des périmètres de petite taille qui sont principalement développés à travers des projets de développement rural intégré, de gestion de ressources naturelles, de développement porté par les communautés (DIC) ou de fonds sociaux.</td>
<td>• Les cultures à forte valeur ajoutée, en général, en milieu urbain, péri-urbaines dans une certaine mesure, et les marchés d'exportation. • L’irrigation de petites parcelles de 0,5 ha à 2 ha en général. • L’utilisation de systèmes à pompe, entre autres (essence légère, diesel, pompes solaires). • L’utilisation accrue de puits tubulaires peu profonds pour le système d’irrigation individuel. • Les Cultures horticoles essentielles. • Les Cultures multiples orientés sur le marché. • La Main-d’œuvre familiale dans les petites parcelles et utilisation de la main-d’œuvre salariée/rémunérée dans les grandes exploitations.</td>
</tr>
</tbody>
</table>

Justification : En Afrique, les processus de développement de l’irrigation portés par les agriculteurs dominent l’expansion de l’irrigation au cours des deux dernières décennies. L’irrigation portée par les agriculteurs implique de nombreuses technologies différentes et a un caractère entrepreneurial, d’autofinancement et axé sur le marché. Les évaluations des ressources matérielles montrent qu’il existe un potentiel substantiel d’expansion de ces systèmes de petite irrigation, à eau bleue et verte, et que les TREI sont élevés. Les programmes soutenant ce groupe doivent cibler les contraintes à la croissance entrepreneuriale. Ces types d’interventions sont relativement peu coûteux par rapport à l’irrigation à grande échelle, qui nécessite d’importants investissements en infrastructures.

Interventions clés : L’accès à des technologies abordables de gestion du limon et d’irrigation est un défi majeur pour les petits exploitants, de même que l’accès au financement et la sécurisation de la gestion des terres (terre et eau). Les autres interventions comprennent :
- Promouvoir des modèles économiques pour les agriculteurs opérant à différentes échelles;
- L’élimination ou la réduction des droits d’importation sur les pompes et le matériel d’irrigation peut générer des rendements économiques plus élevés provenant d’une production d’irrigation accélérée, par rapport aux droits eux-mêmes;
- Le développement de la chaîne de valeur des petites pompes pour un accès plus facile au marché aux acheteurs de technologies, et pour soutenir les réseaux de pièces de rechange et de maintenance;
- L’accès à la technologie solaire rentable, associée à la technologie financière via les smartphones, cette technologie solaire peut fournir aux petits exploitants une énergie de pompage abordable;
- Les normes nationales peuvent protéger les intérêts des consommateurs en ce qui concerne la technologie de pompage (essence, diesel) et la technologie de l’énergie solaire;
- L’Adoption de technologies améliorées de gestion des sols à faible coût;
- Le développement des connaissances et formation à l’utilisation et à la maintenance des technologies des petites pompes et de l’énergie solaire;
- Des réformes spécifiques permettant aux lois qui régissent les ressources en eau de réduire l’exposition aux risques liés à l’accès à l’eau
- L’intégration des besoins en eau du secteur productif informel dans les plans de gestion des bassins versants pour résoudre le stress hydrique et les conflits entre les utilisateurs.

- 24-
3.4 PISTE 3 : Modernisation/réhabilitation des systèmes d’irrigation

<table>
<thead>
<tr>
<th>Description de la Piste de GEA</th>
<th>Caractère typique exploitation-entreprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systèmes d'irrigation réformés et modernisés.
Dans la plupart des pays, les systèmes d'irrigation à moyenne et grande échelle sont généralement plus anciens, avec d'importants systèmes de circuits d'approvisionnement et de distribution. Ces périmètres ont besoin d’être modernisés/réhabilités et parfois élargis.</td>
<td>- Les systèmes d'irrigation sont : les petites exploitations individuelles, les moyennes et grandes - entreprises agricoles à grande échelle.
- Les périmètres privés et publics sont impliqués.
- L'agriculture en transition des origines du projet social d'origine à l'agriculture orientée vers le marché.</td>
</tr>
</tbody>
</table>

Justification : les réformes institutionnelles et autres réformes sont nécessaires pour faire des travaux d'irrigation. Le coût élevé de la fourniture de services d'approvisionnement en eau fiables et suffisants dans le cadre de systèmes publics à grande échelle nécessite de mettre l'accent sur l'agriculture irriguée basée sur le marché. Les coûts de service d'irrigation, prélevés sur les recettes de l'exploitation, doivent être imputés aux coûts d'exploitation et de maintenance de routine et à long terme. La mise en place de réformes juridiques en matière de remembrement (en tant que préalable aux partenariats commerciaux) et de formalisation des pouvoirs des OUE, est un élément de succès. Donner la priorité à la modernisation des systèmes existants plutôt que les nouveaux a du sens en raison des coûts économiques fixes et des attentes plus élevées en termes de rendement.

Interventions Clés :
- Les réformes qui visent la politique et la législation pour assurer les OUE et les opérateurs peuvent être établies et fonctionner;
- D'autres réformes sur l'amélioration du MOM sur les périmètres publics grâce à des mesures telles que la rétention et l'utilisation de frais de service d'irrigation sur les périmètres ;
- L'utilisation des technologies intelligentes pour l'administration du MOM et l'appui à la modernisation technique pour favoriser la facturation volumétrique aux points de vente, au moins tertiaires;
- Susciter un changement d'attitude chez les agriculteurs pour passer des origines sociales à la production commerciale. Cela exige une communication intensive et stratégique sur de longues périodes, soutenues par le développement agro-industrie et la commercialisation;
- L’institution d’un système de gestion par le secteur privé ou par des agences de systèmes d’approvisionnement en eau en vrac (canaux d’approvisionnement, principaux et canaux de distribution), avec un fondement juridiquement établi pour la réglementation et des mesures de fixation de prix équitables.
- La sensibilisation à l'utilisation combinée de l’eau, à l’irrigation supplémentaire et aux mesures d’efficacité de l’utilisation de l’eau associées ;
- La promotion de l’utilisation de l’eau d’irrigation agricole avec un accent spécifique sur le prélèvement artificiel des eaux souterraines;
- La conception des blocs de niveau secondaire discrets hydrauliquement avec des rejets d’eau mesurés et des contrats de service passés avec un opérateur de traitement en vrac ou un organisme d’irrigation et de drainage. Les canaux d’irrigation de niveau secondaire et les blocs peuvent être gérés et exploités en interne par les OUE ;
- Les registres généraux de cartographie des limites /parcelles et d’administration des terres peuvent être préparés pour définir des groupes et faciliter la location des terres ; et
- L’amélioration du marché locatif informel et formel pour accroître l’échange et l’utilisation des terres, faciliter la consolidation/commercialisation et encourager les investissements du secteur privé.
3.5 PISTE 4 : Utilisation non-conventionnelle de l’eau pour l’irrigation

<table>
<thead>
<tr>
<th>Description de la Piste de GEA</th>
<th>Caractère typique exploitation-entreprise</th>
</tr>
</thead>
</table>
| **Récupération et réutilisation des eaux usées** | - Les programmes d’utilisation non-conventionnelle de l’eau peuvent concerner de nombreux petits irrigateurs privés ou constituer des programmes publics conçus à l’extrémité des stations de traitement des eaux.
- Ils sont souvent situés dans les zones péri-urbaines qui sont une source majeure d’eaux usées. Les cultures à forte valeur ajoutée sont ciblées à cause des coûts relativement élevés de traitement. |

Justification : L’utilisation des eaux usées pour l’irrigation est une pratique courante dans les zones rurales et périurbaines de la plupart des pays en développement. Les pénuries d’eau sont des problèmes de plus en plus graves en Afrique et l’urbanisation galopante offre une possibilité de réutilisation des eaux usées en tant que ressource alternative importante. Au cours des dernières années, la réutilisation des eaux usées a connu une croissance. L’irrigation par les eaux usées non traitées a des impacts potentiels sur l’environnement et la santé, ce qui nécessite des pratiques de gestion strictes respectueuses des normes et des mesures de protection. Dans le même temps, les eaux usées contiennent des éléments nutritifs qui peuvent stimuler la croissance des cultures et réduire l’utilisation d’engrais chimiques.

Interventions clés : des réformes politiques sont nécessaires pour donner la priorité à l’irrigation par les eaux usées et permettre aux agriculteurs qui pratiquent l’irrigation d’avoir accès aux eaux usées. Sont également nécessaires :
- Des mesures réglementaires pour garantir la qualité de l’eau salubre liée aux différentes cultures, pratiques et technologies pour garantir un environnement de travail sûr et des produits suffisamment sûrs ;
- Des formulations de réponses stratégiques qui donnent un équilibre entre les mécanismes de réglementation essentiels et le maintien des avantages pour les pauvres qui dépendent des ressources en eaux usées. Le Cadre de Stockholm est important car cela suggère que les pays doivent adapter les directives à leurs propres circonstances sociales, techniques, économiques et environnementales ;
- Les campagnes de sensibilisation du public sur le traitement et l’utilisation des eaux usées pour l’irrigation;
- La recherche, le développement des connaissances et l’application de mesures visant à garantir l’utilisation à moindre risque des eaux usées pour l’irrigation ; et
- Le partage d’informations, d’enseignements et de meilleures pratiques en matière de récupération et de réutilisation des eaux usées entre les États membres.
3.6 Questions transversales de développement et interventions clés nécessaires

3.6.1 Inclusivité dans le développement de l’irrigation et la GEA

La production agricole concerne les femmes, les jeunes, les minorités et autres groupes vulnérables dont les rôles ne sont pas souvent comptabilisés en termes économiques et sociaux. Par exemple, la contribution des femmes à l’agriculture est rarement reconnue, ce qui compromet leur valeur en tant que contributrices clés et les relègue aux rôles secondaires. Un cadre institutionnel et social favorable peut être créé pour faciliter l’inclusivité en matière de GEA. L’inclusivité fournira un cadre pour mieux soutenir chaque groupe économique et social pour exploiter tout leur potentiel. La FAO estime que l’intégration du genre permettrait de produire 20-30% plus de nourriture en Afrique.34

Interventions Clés :

a. Les autorités nationales doivent encourager l’inclusivité dans l’accès aux ressources productives et entreprendre une planification et une conception de l’irrigation sur une base inclusive et consultative ;

b. Effectuer des évaluations inclusives des besoins et des interventions de formations ;

c. Programmer des rencontres selon les moments préférés aussi bien des femmes que des hommes pour éviter les conflits avec les responsabilités traditionnelles ;

d. Tenir des ateliers ciblés pour les femmes, les jeunes et les groupes vulnérables en leadership et prise de décisions dans les Organisations d’Irrigation, et promouvoir leur implication pour un fonctionnement plus fort des organisations ;

e. Encourager les jeunes à s’engager dans la prestation de services d’appui technique à travers les programmes de Jeunes Professionnels, et à travers des stages sur les projets de GEA et de développement de l’irrigation ;

f. Effectuer des voyages d’étude dans des endroits où les femmes et les jeunes jouent des rôles techniques et de leadership et sont autonomisés pour gérer les activités et entreprendre des actions concernant les règles des OUE ; et

g. Renforcer les formations techniques sur la gestion de l’irrigation (au champ et dans les systèmes d’irrigation) et l’utilisation et la maintenance des technologies (de mécanisation, pompes et équipements de transformation des produits agricoles etc.) et encourager l’engagement des ouvriers non-qualifiés et semi-qualifiés dans la GEA. Incorporer des données désagrégées par sexe et le rapportage dans les systèmes de suivi des projets.

h. Inclure les TIC et l’information numérique dans les systèmes de suivi des projets.
3.6.2 Implication du secteur privé

L’implication du secteur privé dans divers domaines de l’eau et de la production agricole présente des opportunités de co-financement et d’augmentation de l’activité commerciale dans les aspects techniques et financiers des opérations d’irrigation. L’implication du secteur privé impose des éléments de durabilité et promeut la compétitivité.

Interventions clés :

a. Créer un climat politique favorable pour attirer les investissements et la participation du secteur privé à l’agriculture irriguée, les opérations d’irrigation et le traitement des produits agricoles y relatif;

b. Les gouvernements nationaux doivent améliorer les infrastructures rurales telles que les pistes rurales, l’expansion de l’électrification rurale et les TIC pour augmenter l’accès aux marchés, réduire les coûts de fonctionnement et de transport et augmenter la rentabilité agricole;

c. Atténuer les risques liés au développement des partenariats de GEA en assurant la clarté des contrats, l’impartialité et la répartition équitable des profits entre le secteur privé et les groupements paysans locaux là où des partenariats opérationnels ou agricoles ont été établis; et

d. Faciliter le développement et les mécanismes de coopératives entre les usagers de l’eau agricole pour compenser les risques et améliorer la viabilité financière.

3.6.3 Adaptation aux changements climatiques et résilience

Etant donné que des millions d’hectares en Afrique sont exploités à travers l’agriculture pluviale, il existe un grand potentiel d’augmentation de la productivité, de renforcement de la résilience et de la rentabilité des entreprises à travers des systèmes de production dans les bas-fonds et sur les flancs de collines en utilisant diverses approches de l’AIC. L’AIC vise la sécurité alimentaire tout en atteignant les objectifs généraux de développement dans un contexte de changements climatiques. L’approche vise à augmenter la productivité et la résilience des systèmes agricoles tout en réduisant ou en éliminant les gaz à effet de serre de ces systèmes.
Interventions clés :

a. Promouvoir les pratiques qui renforcent la résilience au climat à travers par exemple :
 - La diversification des systèmes agricoles pour intégrer l’élevage des petits ruminants ou du gros bétail dans la production et le cycle de gestion de la fertilité;
 - L’introduction de la petite irrigation efficiente en eau et généralement à faibles coûts;
 - Les pratiques de conservation du sol et de l’eau telles que les diguettes, le paillage, le compost et la culture intercalaire;

b. Concentration accrue sur les aménagements irrigués en flancs de collines et hautes terres, qui ne nécessitent qu’une irrigation supplémentaires contrairement aux fonds de plaines qui ont une déficience sévère de pluviométrie et une résilience comparativement limitée aux changements climatiques; et

c. L’intégration des approches de l’AIC7 et de développement des bassins versants dans les plans régionaux et nationaux d’investissements dans l’agriculture.

3.6.4 Microcrédit et mécanismes de financements agricoles

Les microfinancements couvrent un éventail de services financiers fournis aux personnes ayant un capital financier faible ou minimal, principalement mais pas exclusivement les personnes pauvres. Ces services comprennent les produits de crédit, d’épargne et d’assurance. Le ‘Microcrédit’ se compose de petits prêts fournis aux familles pauvres pour développer leurs activités économiques. Ces services financiers à petite échelle sont rarement fournis directement par les banques commerciales dans les zones rurales africaines parce que les bénéfices sur ces petits prêts sont faibles et les risques élevés. Les agriculteurs dénoncent souvent le manque de dispositifs de crédits abordables et accessibles comme étant une contrainte essentielle à l’accès aux biens d’irrigation, en particulier les pompes. Là où il est disponible, le crédit est généralement à court terme pour l’achat des intrants, tels que les semences et les engrais.

Interventions clés:

a. Développer des systèmes appropriés d’appui financier et d’assurance à travers des mécanismes efficaces d’appui institutionnel;

b. Intégrer un appui technique et financier au développement des chaînes des valeurs agricoles;
c. Développer et mettre en œuvre des mécanismes de financement qui peuvent fournir des instruments tels que les fonds de contrepartie et de roulement; et
d. Appuyer les plateformes commerciales reliant les clients, les acheteurs et les vendeurs dans des transactions business-à-consominateur (B2C), ou business-à-business (B2B).
e. Renforcer les capacités institutionnelles des institutions de la microfinance.
f. Créer un environnement favorable aux financements innovants pour le développement de l’irrigation et la GEA.

3.6.5 Politiques et institutions et mécanismes de gouvernance

La mise en place de politiques et de lois favorables, d’institutions de facilitation et d’appui et l’adoption d’outils de gestion efficaces et efficaces sont des conditions essentielles pour récolter les avantages considérables de la GEA en Afrique. Les questions de la sécurité foncière et hydraulique sont fondamentales pour l’agriculture irriguée et sous GEA. Les droits non-sécurisés et le manque d’accès physique à l’eau créent un risque qui démotive l’investissement privé dans l’irrigation. Sur les aménagements irrigués, les permis doivent couvrir l’ensemble du périmètre avec des droits d’utilisation octroyés à l’entité appropriée telle qu’une OUE. L’administration est beaucoup plus difficile dans le cas d’exploitants multiples privés utilisant leur propre système de petite irrigation. Ces agriculteurs souffrent d’incertitude dans la plupart des pays africains du fait que la charge administrative va au-delà de la capacité des services gouvernementaux chargés de délivrer les permis. Cela pénalise effectivement les usagers individuels de l’eau en plus de les exposer à un plus grand risque et à une plus grande vulnérabilité face aux conséquences du stress hydrique.

Interventions clés :

a. Aligner les politiques nationales, régionales et continentales;
b. Mettre en place des politiques, des lois et des réglementations favorables à une coordination efficace de la GEA à tous les niveaux;
c. Instituer des dispositifs réglementaires hybrides des ressources en eau qui permettent à de multiples petits préleveurs de sécuriser davantage leur accès, ces dispositifs doivent promouvoir les réglementations de l’utilisation de l’eau qui encouragent une forte adhésion et réduisent les coûts de transaction pour les petits agriculteurs, en particulier quand les prélèvements sont en dessous de certains seuils;
d. Autonomiser juridiquement les organisations de gestion de l’eau (organisations d’irrigation et OUE), en particulier par rapport:aux droits d’utilisation des infrastructures publiques d’irrigation; à l’adhésion obligatoire aux organisations d’irrigation et /ou OUE; et au droit de collecter et de garder des frais de services d’irrigation au niveau programme afin de permettre un MOM durable;

e. Promouvoir la bonne gouvernance dans le fonctionnement des structures organisationnelles d’approvisionnement en eau pour l’irrigation et la prestation de services agricoles;

f. Fournir un environnement favorable au développement institutionnel de la gestion des terres et,

g. Promouvoir des options à moindre coût énergétique (énergies renouvelables) et des relations commerciales appropriées pour l’agriculture irriguée.

3.6.6 Améliorer la qualité de l’eau et du sol et résoudre d’autres problèmes environnementaux

Le mauvais drainage, l’engorgement, l’eutrophisation, la salinité et l’acidité du sol sont des problèmes courants dans les programmes de GEA. S’ils ne sont pas résolus, ils peuvent entraîner l’inadaptation des terres, l’échec des programmes et la perte connexe des investissements. Il existe de nombreux facteurs affectant la qualité de l’eau et des sols. Les terres qui reçoivent une forte pluviométrie ou les terres qui sont soumises à une irrigation permanente peuvent devenir acides à travers la lixiviation, et perdre les minéraux au fil du temps à cause des récoltes continues ; ou alors le matériau principal devient acide. Un accent particulier doit être mis sur la qualité du sol et de l’eau lors de la conception du projet et des opérations permanentes afin de limiter la perte de ressources naturelles.

Interventions clés :

a. Promouvoir l’application de mesures correctives à l’acidité des sols telles que l’utilisation: de la chaux agricole; du compost de haute qualité; de la cendre de bois; et de farines carnées.

b. Encourager la lixiviation de routine des sels à travers de lourdes applications d’irrigation périodiques avec de l’eau douce entraînant une percolation profonde au-delà la zone de la racine, avec des traitements basés sur les résultats de tests du sol.

c. Promouvoir des investissements dans des systèmes de drainage appropriés.
d. Développer et mettre en œuvre des règlementations en faveur de la qualité des sols et de l’eau, y compris l’utilisation des engrais et des pesticides.

e. Promouvoir des technologies et des practices appropriées, et lutter contre la dégradation des terres.

3.6.7 Recherche, suivi, évaluation et transfert des connaissances

La planification et la règlementation de nouvelles initiatives sur l’eau, que celles-ci soient centrées sur l’intensification ou l’extension, nécessitent des données bien meilleures sur l’étendue et la couverture réelles des activités agricoles existantes sous GEA. Il y a une grande incertitude concernant les superficies réelles sous GEA, y compris celles équipées pour l’irrigation et les structures de types de récolte de l’eau, et la GEA sans ouvrages. De même, en ce qui concerne les systèmes financiers innovants pour l’agriculture, il y a des travaux préliminaires substantiels en cours en Afrique. Cependant, le suivi des expériences, l’amendement des approches, et des expérimentations continues sont nécessaires dans les pays africains en vue d’optimiser les services relatifs aux différents besoins des paysans. Le transfert de connaissances à travers la transposition rayonnante et ascendante est fondamentalement motivé et facilitée par une bonne structure de gestion des connaissances.

Interventions clés :

a. Revoir et renforcer en cas de besoin, les systèmes existants de suivi et évaluation à tous les niveaux, en appui à un rapportage global sur la GEA;

b. Encourager et soutenir la Recherche & Développement afin d’améliorer continuellement la base de connaissances sur la GEA; et

c. Faciliter la mise en place de plateformes et/ou de fora de partage d’informations pertinentes.

d. Encourager et soutenir la collecte, le traitement et la diffusion de données désagrégées

e. Rendre compte des initiatives régionales en cours et développer des interventions appropriées relatives à la connaissance des ressources en eau et leur mobilisation pour le développement de l’irrigation et la GEA.
3.7 Conclusions et recommandations

La souveraineté et l’égalité souveraine des EM sont dûment soulignées dans l’Acte Constitutif de l’Union Africaine. Cela implique que tous les EM ont le droit de décider d’adopter leurs propres politiques et agendas de développement sectoriel. Il existe une demande et une opportunité claires d’extension et d’intensification de la GEA à travers le continent. L’agriculture pluviale soutenue par des interventions de développement de l’eau agricole et l’agriculture irriguée sont tous deux d’une grande importance dans la GEA en Afrique. Il existe des similitudes dans les défis qui minent le développement de l’irrigation et de la GEA en Afrique, même si les contextes sont très divers. Les options proposées dans ce cadre ne sont pas ni exécutoires ni supposés être des plans cadres exclusifs pour le développement de l’irrigation et de la GEA dans les EM. Le cadre reconnaît les diversités significatives dans les conditions agro-écologiques, la situation des aménagements sous GEA et les capacités d’initiation, de planification et de mise en œuvre des options à travers le continent. Relever les défis de l’accès aux technologies et aux financements pour les petits irrigateurs; du développement institutionnel en ce qui concerne la gestion des terres et de l’eau; et l’implication du secteur privé constituent des priorités. Il est prévu que les équipes nationales développent chacun de ces thèmes selon les opportunités.

Le cadre de DIGEA propose des investissements dans quatre pistes parallèles de développement en vue d’atteindre les objectifs de la Déclaration de Malabo 2014. Sept thèmes transversaux doivent être pris en compte dans chaque piste et ensemble, ils permettront d’éclairer les réformes politiques et la conception des programmes de GEA. Le cadre appelle à une large vision des opportunités avec de multiples pistes parallèles qui peuvent transformer les ressources agricoles et le potentiel des agriculteurs en une réalité agricole prospère. Les questions et les opportunités fondamentales ont été identifiées et constituent une base pour la poursuite de la discussion au niveau national, pour des plans mieux éclairés et l’acquisition de connaissances plus factuelles. L’on espère que le cadre soutiendra les stratégies nationales et la mise en œuvre des projets en vue de l’atteinte des objectifs de la Déclaration de Malabo 2014 à travers la promotion et l’accélération des initiatives nationales de planification de la GEA.

Les principales recommandations sont :

L’irrigation et le développement de la GEA doivent constituer une grande priorité : L’irrigation doit être élevée au rang des premières priorités dans l’allocation des ressources publiques car elle peut apporter une contribution majeure à la réduction de la pauvreté étant donné l’augmentation de la production agricole qui proviendrait de l’intensification.

Motivation et augmentation de l’implication du secteur privé dans la gestion de l’eau et la production agricole : Le secteur privé est un acteur essentiel ayant des opportunités claires de co-financement et /ou d’appui aux activités d’irrigation. Ces opportunités comprennent les accords de collaboration tels que : les producteurs indépendants dans des joint-ventures; les agents de gestion sur les exploitations communautaires irriguées; les opérateurs d’approvisionnement en eau; les partenariats de fourniture de technologies et de connaissances agricoles; ou tout simplement des locataires d’une portion de l’aménagement générant un revenu pour les propriétaires terriens. Les gouvernements peuvent réduire les risques liés aux investissements pour le secteur privé, renforcer le climat des investissements à travers des
interventions de réformes institutionnelles et prendre des mesures incitatives telles que les subventions intelligentes, les exonérations fiscales ou les garanties financières.

Appui technologique et diffusion des technologies : les gouvernements doivent appuyer la définition des normes, la formation technique et les réseaux de distribution des équipements d’irrigation, en particulier les petites pompes.

Les services et les applications technologiques financiers doivent être encouragés dans les politiques nationales et autorisés par la loi. Ils peuvent apporter une contribution essentielle dans la garantie de l’accessibilité de l’irrigation et des technologies agricoles à travers un accès plus facile et à moindres coûts aux micro-financements.

Interventions de tenure foncière : La location des terres dans les aménagements publics est limitée par l’absence d’institutions locales de bail et d’échange. L’activité d’irrigation peut être encouragée en diminuant les risques liés à l’investissement, par exemple en sécurisant des superficies pour des partenariats avec le secteur privé. Les interventions localisées d’échange de terres impliquant la cartographie des champs et des registres fonciers locaux offrent une option à court terme et peuvent aider à mieux sécuriser les locations de terres et à intensifier la production agricole.

4. Références

1 FAO. 2016. AQUASTAT Main Database - Food and Agriculture Organization of the United Nations (FAO). Website accessed on 21/11/2018 11:44

- 36-

34 FAO. 2011. The state of the world’s land and water resources for food and agriculture (SOLAW): Managing systems at risk. Food and Agriculture Organization of the United Nations (FAO): Rome
